Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. 2004

Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599-7090, USA.

Acetaminophen overdose causes massive hepatic failure via mechanisms involving glutathione depletion, oxidative stress, and mitochondrial dysfunction. The ultimate target of acetaminophen causing cell death remains uncertain, and the role of apoptosis in acetaminophen-induced cell killing is still controversial. Our aim was to evaluate the mitochondrial permeability transition (MPT) as a key factor in acetaminophen-induced necrotic and apoptotic killing of primary cultured mouse hepatocytes. After administration of 10 mmol/L acetaminophen, necrotic killing increased to more than 49% and 74%, respectively, after 6 and 16 hours. MPT inhibitors, cyclosporin A (CsA), and NIM811 temporarily decreased necrotic killing after 6 hours to 26%, but cytoprotection was lost after 16 hours. Confocal microscopy revealed mitochondrial depolarization and inner membrane permeabilization approximately 4.5 hours after acetaminophen administration. CsA delayed these changes, indicative of the MPT, to approximately 11 hours after acetaminophen administration. Apoptosis indicated by nuclear changes, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and caspase-3 activation also increased after acetaminophen administration. Fructose (20 mmol/L, an adenosine triphosphate-generating glycolytic substrate) plus glycine (5 mmol/L, a membrane stabilizing amino acid) prevented nearly all necrotic cell killing but paradoxically increased apoptosis from 37% to 59% after 16 hours. In the presence of fructose plus glycine, CsA decreased apoptosis and delayed but did not prevent the MPT. In conclusion, after acetaminophen a CsA-sensitive MPT occurred after 3 to 6 hours followed by a CsA-insensitive MPT 9 to 16 hours after acetaminophen. The MPT then induces ATP depletion-dependent necrosis or caspase-dependent apoptosis as determined, in part, by ATP availability from glycolysis.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005632 Fructose A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Levulose,Apir Levulosa,Fleboplast Levulosa,Levulosa,Levulosa Baxter,Levulosa Braun,Levulosa Grifols,Levulosa Ibys,Levulosa Ife,Levulosa Mein,Levulosado Bieffe Medit,Levulosado Braun,Levulosado Vitulia,Plast Apyr Levulosa Mein,Levulosa, Apir,Levulosa, Fleboplast
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3

Related Publications

Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
April 2000, The Journal of biological chemistry,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
April 2004, Journal of hepatology,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
November 2005, Cell death and differentiation,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
March 1998, Cell biology and toxicology,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
February 2005, The Journal of pharmacology and experimental therapeutics,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
November 2010, Toxicological sciences : an official journal of the Society of Toxicology,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
August 2001, Hepatology (Baltimore, Md.),
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
December 2003, Free radical biology & medicine,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
September 2011, Cell calcium,
Kazuyoshi Kon, and Jae-Sung Kim, and Hartmut Jaeschke, and John J Lemasters
May 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!