Activation of the human immunodeficiency virus type 1 long terminal repeat by vaccinia virus. 1992

K A Stellrecht, and K Sperber, and B G Pogo
Department of Neoplastic Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574.

A variety of DNA viruses are known to activate gene expression directed by the long terminal repeat (LTR) of human immunodeficiency virus type 1 (HIV-1). In light of the proposed use of recombinant vaccinia virus for HIV-1 vaccines, evaluation of the role of vaccinia virus in HIV-1 activation is warranted. To investigate whether vaccinia virus induces HIV LTR-directed gene expression, transient expression assays in Jurkat cells persistently infected with vaccinia virus (Jvac) using plasmid DNA containing the LTR linked to the bacterial chloramphenicol acetyltransferase (CAT) gene were performed. CAT activity in Jvac cells was always recorded, although the level appears to fluctuate independently of virus titers. Dual intracytoplasmic staining and fluorescence-activated cell sorter analysis showed that CAT activity was expressed in the infected cells. CAT expression was not due to plasmid replication, since plasmid DNA extracted from Jvac cells 48 h after transfection was restricted only by enzymes which recognize methylated sequences, indicating a prokaryotic source for the DNA. These findings suggest that a factor(s) present in vaccinia virus-infected cells is capable of activating the LTR of HIV-1.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014616 Vaccinia virus The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS. Buffalopox virus,Poxvirus officinale,Rabbitpox virus,Buffalo Pox Virus,Rabbit Pox Virus,Buffalo Pox Viruses,Buffalopox viruses,Rabbit Pox Viruses,Rabbitpox viruses,Vaccinia viruses,Virus, Buffalo Pox,Viruses, Buffalo Pox,virus, Buffalopox
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D016325 HIV Long Terminal Repeat Regulatory sequences important for viral replication that are located on each end of the HIV genome. The LTR includes the HIV ENHANCER, promoter, and other sequences. Specific regions in the LTR include the negative regulatory element (NRE), NF-kappa B binding sites , Sp1 binding sites, TATA BOX, and trans-acting responsive element (TAR). The binding of both cellular and viral proteins to these regions regulates HIV transcription. HIV Negative Regulatory Element,HIV Sp1-Binding Site,HIV Trans-Acting Responsive Region,Human Immunodeficiency Virus Long Terminal Repeat,Long Terminal Repeat, HIV,Negative Regulatory Element, HIV,Sp1-Binding Site, HIV,Trans-Acting Responsive Region, HIV,HIV-1 LTR,Human Immunodeficiency Virus LTR,LTR, Human Immunodeficiency Virus,TAR Element, HIV,Trans-Activation Responsive Element, HIV,Trans-Activation Responsive Region, HIV,HIV 1 LTR,HIV Sp1 Binding Site,HIV Sp1-Binding Sites,HIV TAR Element,HIV TAR Elements,HIV Trans Acting Responsive Region,LTR, HIV-1,Sp1 Binding Site, HIV,Sp1-Binding Sites, HIV,TAR Elements, HIV,Trans Acting Responsive Region, HIV,Trans Activation Responsive Element, HIV,Trans Activation Responsive Region, HIV

Related Publications

K A Stellrecht, and K Sperber, and B G Pogo
January 1994, Journal of virology,
K A Stellrecht, and K Sperber, and B G Pogo
October 1990, The Journal of clinical investigation,
K A Stellrecht, and K Sperber, and B G Pogo
September 1991, Virology,
K A Stellrecht, and K Sperber, and B G Pogo
June 2007, Journal of molecular endocrinology,
K A Stellrecht, and K Sperber, and B G Pogo
January 1997, Free radical biology & medicine,
K A Stellrecht, and K Sperber, and B G Pogo
August 1993, Proceedings of the National Academy of Sciences of the United States of America,
K A Stellrecht, and K Sperber, and B G Pogo
September 1993, AIDS research and human retroviruses,
Copied contents to your clipboard!