Role of dietary intake and intestinal absorption of oxalate in calcium stone formation. 2004

Ph Jaeger, and W G Robertson
Department of Nephrology, University Hospital, Nice, France.

The factors affecting the urinary excretion of oxalate are critical to the risk of forming calcium oxalate stones. This article reviews the role of dietary and intestinal oxalate in determining the level of oxalate excreted in urine. The amount of oxalate available for absorption throughout the intestine is highly dependent on the state of oxalate (a) in the food ingested, and (b) in the intestinal contents at each section of the intestinal tract since only the soluble form of oxalate can be absorbed. In this respect, the solubility of calcium oxalate (CaOx) under the prevailing conditions is paramount in determining the amount of oxalate available for absorption at any particular site. In turn, the main factors that control how much oxalate is in the soluble form are pH and the concentrations of calcium, magnesium and (indirectly) phosphate. Based on these parameters, a model of the intestine has been constructed which brings together the available evidence on the prevailing concentrations of these various factors at different sites in the intestine after allowing for dietary intake and the concentration of the above ions in intestinal secretions. The model then calculates the likely concentration of oxalate that is in the soluble form at each site and therefore available for passive absorption at that site. The model shows that oxalate is likely to be absorbed in the stomach, although it can be also absorbed in the small intestine, particularly at the distal end (after the absorption of calcium), and in the colon, since, on a normal intake of calcium and phosphate, most of the calcium in the large bowel would be anticipated to be precipitated as calcium phosphate under the prevailing alkaline conditions and high concentration of phosphate. The amount of free oxalate in the colon is also controlled by the presence or absence of Oxalobacter formigenes, an anaerobe that has an obligate requirement for oxalate as a source of energy and cellular carbon.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D010070 Oxalates Derivatives of OXALIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are derived from the ethanedioic acid structure. Oxalate,Ethanedioic Acids,Oxalic Acids,Acids, Ethanedioic,Acids, Oxalic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002137 Calculi An abnormal concretion occurring mostly in the urinary and biliary tracts, usually composed of mineral salts. Also called stones. Biliary or Urinary Stones,Calculus
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Ph Jaeger, and W G Robertson
October 1977, The American journal of digestive diseases,
Ph Jaeger, and W G Robertson
March 2019, American journal of physiology. Renal physiology,
Ph Jaeger, and W G Robertson
January 1989, Scandinavian journal of urology and nephrology,
Ph Jaeger, and W G Robertson
June 2003, International journal of urology : official journal of the Japanese Urological Association,
Ph Jaeger, and W G Robertson
January 2004, Obesity research,
Ph Jaeger, and W G Robertson
December 1995, British journal of urology,
Ph Jaeger, and W G Robertson
January 2000, Molecular urology,
Ph Jaeger, and W G Robertson
January 1995, Scanning microscopy,
Copied contents to your clipboard!