Msx2 controls ameloblast terminal differentiation. 2004

Marianna Bei, and Stephanie Stowell, and Richard Maas
Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. marianna.bei@cbrc2.mgh.harvard.edu

Late tooth morphogenesis is characterized by a series of events that determine cusp morphogenesis and the histodifferentiation of epithelial cells into enamel-secreting ameloblasts. Mice lacking the homeobox gene Msx2 exhibit defects in cusp morphogenesis and in the process of amelogenesis. To better understand the basis of the Msx2 mutant tooth defects, we have investigated the function of Msx2 during late stages of tooth morphogenesis. Cusp formation is thought to be under the control of the enamel knot, which has been proposed to act as an organizing center during this process (Vaahtokari et al. [ 1996] Mech. Dev. 54:39-43). Bone morphogenetic protein-4 (BMP4) has been suggested to mediate termination of enamel knot signaling by means of regulation of programmed cell death (Jernvall et al. [ 1998] Development 125:161-169). Here, we show that Bmp4 expression in the enamel knot is Msx2-dependent. We further show that during amelogenesis Msx2 is required for the expression of the extracellular matrix gene Laminin 5 alpha 3, which is known to play an essential role during ameloblast differentiation. This result thus provides a paradigm for understanding how transcription factors and extracellular matrix can be integrated into a developmental pathway controlling cell differentiation.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003743 Dental Enamel A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286) Enamel,Enamel Cuticle,Dental Enamels,Enamel, Dental,Enamels, Dental,Cuticle, Enamel,Cuticles, Enamel,Enamel Cuticles,Enamels
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females

Related Publications

Marianna Bei, and Stephanie Stowell, and Richard Maas
January 2014, Frontiers in physiology,
Marianna Bei, and Stephanie Stowell, and Richard Maas
February 1995, The International journal of developmental biology,
Marianna Bei, and Stephanie Stowell, and Richard Maas
January 1980, Acta anatomica,
Marianna Bei, and Stephanie Stowell, and Richard Maas
May 2016, The Japanese dental science review,
Marianna Bei, and Stephanie Stowell, and Richard Maas
May 1999, Developmental biology,
Marianna Bei, and Stephanie Stowell, and Richard Maas
January 2002, Cells, tissues, organs,
Marianna Bei, and Stephanie Stowell, and Richard Maas
May 2017, Science immunology,
Marianna Bei, and Stephanie Stowell, and Richard Maas
March 2009, Proceedings of the National Academy of Sciences of the United States of America,
Marianna Bei, and Stephanie Stowell, and Richard Maas
August 1988, Proceedings of the National Academy of Sciences of the United States of America,
Marianna Bei, and Stephanie Stowell, and Richard Maas
September 2014, Developmental cell,
Copied contents to your clipboard!