Maximum-likelihood analysis of human T-cell X chromosome inactivation patterns: normal women versus carriers of X-linked severe combined immunodeficiency. 1992

J M Puck, and C C Stewart, and R L Nussbaum
Joseph Stokes Junior Research Institute, Children's Hospital, Philadelphia, PA.

Lymphocytes of female carriers of X-linked severe combined immunodeficiency (XSCID; McKusick 300400; HGM genetic locus designation SCIDX1) exhibit nonrandom X chromosome inactivation. This phenomenon reflects a tissue-specific selective disadvantage for lymphocyte progenitors with an XSCID mutation on the active X chromosome and presumably is analogous to the process that inhibits T-cell development in affected boys with a single XSCID-bearing X chromosome. We investigated the specificity of T-cell X chromosome inactivation pattern as an indicator of immunodeficiency carrier status, as follows: X-inactivation ratios determined in a control group of noncarrier women exhibited a wide range, 20%-86% of T-cells with the paternal X active. Maximum-likelihood analysis of these data suggested that, in humans, mature T-cells are derived from a small pool of only about 10 randomly inactivated stem cells. Despite the wide variability in normal X-inactivation ratios, X inactivation in XSCID carriers appeared far more markedly skewed. Therefore a maximum-likelihood odds-ratio test was developed and proved to be successful in predicting the carrier status of women in XSCID pedigrees. This test has made it possible to identify XSCID carriers among mothers of boys with the heterogeneous syndrome of sporadic severe combined immunodeficiency.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D004303 Dosage Compensation, Genetic Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female. Dosage Compensation (Genetics),Gene Dosage Compensation,Hypertranscription, X-Chromosome,X-Chromosome Hypertranscription,Compensation, Dosage (Genetics),Compensation, Gene Dosage,Compensation, Genetic Dosage,Dosage Compensation, Gene,Gene Dosage Compensations,Genetic Dosage Compensation,Genetic Dosage Compensations,Hypertranscription, X Chromosome,X Chromosome Hypertranscription
D005260 Female Females
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

J M Puck, and C C Stewart, and R L Nussbaum
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
J M Puck, and C C Stewart, and R L Nussbaum
May 1987, The Journal of clinical investigation,
J M Puck, and C C Stewart, and R L Nussbaum
January 1993, Journal of immunology (Baltimore, Md. : 1950),
J M Puck, and C C Stewart, and R L Nussbaum
April 1988, Lancet (London, England),
J M Puck, and C C Stewart, and R L Nussbaum
April 1990, The New England journal of medicine,
J M Puck, and C C Stewart, and R L Nussbaum
June 1990, Clinical immunology and immunopathology,
J M Puck, and C C Stewart, and R L Nussbaum
April 1997, Hematology and cell therapy,
J M Puck, and C C Stewart, and R L Nussbaum
March 1997, Blood,
Copied contents to your clipboard!