VEGF increases paracellular transport without altering the solvent-drag reflection coefficient. 2004

Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
Department of Biomedical Engineering, The City College of The City University of New York, New York, NY 10031, USA.

Vascular endothelial growth factor (VEGF) increases microvascular permeability and has been implicated in the development of numerous pathologies including diabetic retinopathy (DR), hypoxia/ischemia, and tumor biology. The transport pathways by which water and solutes cross the endothelium in response to VEGF, however, are not completely understood. We measured, in real time, bovine retinal endothelial cell (BREC) hydraulic conductivity (Lp), 70 kDa dextran permeability (Pe), and the solvent-drag reflection coefficient (sigma) before and after addition of 50 ng/ml VEGF. The diffusional permeability coefficient for dextran (Pd) was measured before pressure gradient application. The sudden application of a 10-cm H2O hydrostatic pressure gradient induced water and solute fluxes that decayed to steady-state values after approximately 2 h. Subsequently, the addition of VEGF significantly increased Lp and Pe by 4.3-fold +/- 0.7-fold and 3.0-fold +/- 0.3-fold, respectively, after 110 min; however, the reflection coefficient remained approximately constant throughout the experiment (approximately 0.8). These observations suggest that water and dextran utilize common paracellular channels across BREC monolayers. Furthermore, the addition of VEGF increases the number or availability of channels but does not alter the selectivity of the monolayer to 70 kDa dextran.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent

Related Publications

Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
July 1987, The American journal of physiology,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
August 1991, The Journal of general physiology,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
October 2008, The journal of physiological sciences : JPS,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
January 1994, Blood purification,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
December 1980, Proceedings of the Royal Society of London. Series B, Biological sciences,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
August 1985, Microcirculation, endothelium, and lymphatics,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
October 1988, Pflugers Archiv : European journal of physiology,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
May 2014, Anatomical record (Hoboken, N.J. : 2007),
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
August 1986, The Journal of clinical investigation,
Lucas DeMaio, and David A Antonetti, and Russell C Scaduto, and Thomas W Gardner, and John M Tarbell
January 1986, Chest,
Copied contents to your clipboard!