Alcohol effects on gamma-aminobutyric acid type A receptors: are extrasynaptic receptors the answer? 2004

H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
Department of Molecular and Medical Pharmacology, University of California Los Angeles, Room 23-338 CHS, 650 Charles Young Drive South, Los Angeles, CA 90095-1735, USA.

GABA(A) receptors have long been implicated in mediating at least part of the actions of ethanol in mammalian brain. However, until very recently, reports of the actions of EtOH on recombinant receptors have required very high doses of ethanol and animals lacking receptor subunits shown to be important for ethanol actions in vitro did not support the view that these subunits are crucial in ethanol actions. Recombinant alpha4beta3delta and alpha6beta3delta GABA(A) receptors are uniquely sensitive to ethanol, with a dose-response relationship mirroring the well known effects of alcohol consumption on the human brain. Receptors containing the delta subunit are thought to be located extrasynaptically and it will be important to determine if these extrasynaptic GABA(A) receptor subunit combinations mediate low dose alcohol effects in vivo.

UI MeSH Term Description Entries
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
November 1985, Canadian journal of physiology and pharmacology,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
April 2024, Anesthesiology,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
April 1994, Canadian journal of physiology and pharmacology,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
September 2001, The Journal of biological chemistry,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
March 1998, Anesthesiology,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
May 2004, Anesthesia and analgesia,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
January 1993, Psychopharmacology series,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
July 2000, Proceedings of the National Academy of Sciences of the United States of America,
H Jacob Hanchar, and Martin Wallner, and Richard W Olsen
December 2000, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!