Methadone--metabolism, pharmacokinetics and interactions. 2004

Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
Section of Toxicology and Clinical Pharmacology, University of Modena and Reggio Emilia, Policlinico, Largo del Pozzo, 71-41100 Modena, Italy. annaf@unimore.it

The pharmacokinetics of methadone varies greatly from person to person; so, after the administration of the same dose, considerably different concentrations are obtained in different subjects, and the pharmacological effect may be too small in some patients, too strong and prolonged in others. Methadone is mostly metabolised in the liver; the main step consists in the N-demethylation by CYP3A4 to EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine), an inactive metabolite. The activity of CYP3A4 varies considerably among individuals, and such variability is the responsible for the large differences in methadone bioavailability. CYP2D6 and probably CYP1A2 are also involved in methadone metabolism. During maintenance treatment with methadone, treatment with other drugs may be necessary due to the frequent comorbidity of drug addicts: psychotropic drugs, antibiotics, anticonvulsants and antiretroviral drugs, which can cause pharmacokinetic interactions. In particular, antiretrovirals, which are CYP3A4 inducers, can decrease the levels of methadone, so causing withdrawal symptoms. Buprenorphine, too, is metabolised by CYP3A4, and may undergo the same interactions as methadone. Since it is impossible to foresee the time-lapse from the administration of another drug to the appearing of withdrawal symptoms, nor how much the daily dose of methadone should be increased in order to prevent them, patients taking combined drug treatments must be carefully monitored. The so far known pharmacokinetic drug-drug interactions of methadone do not have life-threatening consequences for the patients, but they usually cause a decrease of the concentrations and of the effects of the drug, which in turn can cause symptoms of withdrawal and increase the risk of relapse into heroin abuse.

UI MeSH Term Description Entries
D008691 Methadone A synthetic opioid that is used as the hydrochloride. It is an opioid analgesic that is primarily a mu-opioid agonist. It has actions and uses similar to those of MORPHINE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1082-3) Amidone,Biodone,Dolophine,Metadol,Metasedin,Methaddict,Methadone Hydrochloride,Methadose,Methex,Phenadone,Phymet,Physeptone,Pinadone,Symoron,Hydrochloride, Methadone
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051544 Cytochrome P-450 CYP3A A cytochrome P-450 suptype that has specificity for a broad variety of lipophilic compounds, including STEROIDS; FATTY ACIDS; and XENOBIOTICS. This enzyme has clinical significance due to its ability to metabolize a diverse array of clinically important drugs such as CYCLOSPORINE; VERAPAMIL; and MIDAZOLAM. This enzyme also catalyzes the N-demethylation of ERYTHROMYCIN. CYP3A,CYP3A4,CYP3A5,Cytochrome P-450 CYP3A4,Cytochrome P-450 CYP3A5,Cytochrome P-450IIIA,Cytochrome P450 3A,Cytochrome P450 3A4,Cytochrome P450 3A5,Erythromycin N-Demethylase,Taurochenodeoxycholate 6-alpha-Monooxygenase,3A5, Cytochrome P450,6-alpha-Monooxygenase, Taurochenodeoxycholate,Cytochrome P 450 CYP3A,Cytochrome P 450 CYP3A4,Cytochrome P 450 CYP3A5,Cytochrome P 450IIIA,Erythromycin N Demethylase,N-Demethylase, Erythromycin,P-450 CYP3A, Cytochrome,P-450 CYP3A4, Cytochrome,P-450 CYP3A5, Cytochrome,P-450IIIA, Cytochrome,P450 3A, Cytochrome,P450 3A5, Cytochrome,Taurochenodeoxycholate 6 alpha Monooxygenase

Related Publications

Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
April 2007, The Journal of pharmacology and experimental therapeutics,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
January 1986, Contributions to nephrology,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
January 1987, Nephrologie,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
June 1976, Schweizerische medizinische Wochenschrift,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
January 2005, Journal of pain & palliative care pharmacotherapy,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
October 1984, Clinical pharmacology and therapeutics,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
January 1982, Acta anaesthesiologica Scandinavica. Supplementum,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
April 1985, The Journal of pharmacology and experimental therapeutics,
Anna Ferrari, and Ciro Pio Rosario Coccia, and Alfio Bertolini, and Emilio Sternieri
December 2018, Journal of pharmaceutical sciences,
Copied contents to your clipboard!