Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). 2004

C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
Laboratoire Ecologie Systematique et Evolution, Université Paris-Sud, Batiment 360, 91405, Orsay Cedex, France.

The origin of rice domestication has been the subject of debate for several decades. We have compared the transpositional history of 110 LTR retrotransposons in the genomes of two rice varieties, Nipponbare (Japonica type) and 93-11 (Indica type) whose complete sequences have recently been released. Using a genomic paleontology approach, we estimate that these two genomes diverged from one another at least 200,000 years ago, i.e., at a time which is clearly older than the date of domestication of the crop (10,000 years ago, during the late Neolithic). In addition, we complement and confirm this first in silico analysis with a survey of insertion polymorphisms in a wide range of traditional rice varieties of both Indica and Japonica types. These experimental data provide additional evidence for the proposal that Indica and Japonica rice arose from two independent domestication events in Asia.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012275 Oryza A genus of grass family (Poaceae) that include several rice species. Oryza sativa,Rice,Rices
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D018626 Retroelements Elements that are transcribed into RNA, reverse-transcribed into DNA and then inserted into a new site in the genome. Long terminal repeats (LTRs) similar to those from retroviruses are contained in retrotransposons and retrovirus-like elements. Retroposons, such as LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS do not contain LTRs. MDG1 Retrotransposons,Mobile Dispersed Genetic Elements,Retroposons,Retrotransposons,Retrovirus-like Elements,Ty1 Transposon,Element, Retrovirus-like,Elements, Retrovirus-like,MDG1 Retrotransposon,Retroelement,Retroposon,Retrotransposon,Retrotransposon, MDG1,Retrotransposons, MDG1,Retrovirus like Elements,Retrovirus-like Element,Transposon, Ty1,Transposons, Ty1,Ty1 Transposons
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational

Related Publications

C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
March 1996, Transgenic research,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
January 2015, Methods in molecular biology (Clifton, N.J.),
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
January 2015, Methods in molecular biology (Clifton, N.J.),
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
April 2009, Journal of agricultural and food chemistry,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
February 1996, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
November 1983, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
December 1989, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
October 2018, Gene,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
January 2021, Frontiers in genetics,
C Vitte, and T Ishii, and F Lamy, and D Brar, and O Panaud
December 1982, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Copied contents to your clipboard!