Adenosine-sensitive afterdepolarizations and triggered activity in guinea pig ventricular myocytes. 1992

Y Song, and S Thedford, and B B Lerman, and L Belardinelli
Department of Medicine, University of Florida, Gainesville 32610.

This study examines the cellular basis and specificity of the effects of adenosine on early afterdepolarizations (EADs), delayed afterdepolarizations (DADs), and triggered activity (TA) induced by various drugs with different mechanisms of action. Membrane potential and currents were measured in isolated guinea pig ventricular myocytes. Adenosine (10-100 microM) significantly (p less than 0.05) reduced the amplitude of DADs and suppressed TA induced by isoproterenol (10-50 nM) and forskolin (1 microM) but not those induced by dibutyryl cAMP (1 microM), ouabain (1-5 microM), and 7.2 mM [Ca2+]o. Adenosine also abolished EADs and TA induced by isoproterenol. In contrast, adenosine failed to abolish EADs and TA induced by quinidine (3 microM) or those that occurred spontaneously (i.e., in the absence of drugs). Transient inward current (ITi) was induced on repolarization after 2-second-long single depolarizing voltage steps or after 12-second-long trains of 300-msec depolarizing pulses. Concomitant with the attenuation of DADs, adenosine suppressed ITi caused by isoproterenol and forskolin but not those induced by ouabain, dibutyryl cAMP, and elevated [Ca2+]o. The amplitude of ITi was dependent on the magnitude of the activating voltage step, but the suppression of ITi by adenosine was not. The selective A1-adenosine receptor antagonist N-0861 (9-methyladenine derivative) antagonized the effects of adenosine on afterdepolarizations, ITi, and TA. In myocytes from guinea pigs treated with pertussis toxin, adenosine failed to attenuate DADs and ITi or abolish TA induced by isoproterenol or forskolin. In parallel experiments, isoproterenol (10 nM) raised cellular cAMP from 5.7 +/- 0.2 to 8.1 +/- 0.1 pmol and the selective A1 receptor agonist cyclopentyladenosine (5 microM) reduced it to 6.5 +/- 0.2 pmol (p less than 0.05). Thus, adenosine specifically attenuates afterdepolarizations and abolishes TA by suppressing ITiS that are associated with stimulation of adenylate cyclase via a pertussis toxin-sensitive A1 receptor-mediated action. In conclusion, the response of TA to adenosine may identify a mechanism of afterdepolarization related to stimulation of adenylate cyclase.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D005260 Female Females
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right

Related Publications

Y Song, and S Thedford, and B B Lerman, and L Belardinelli
October 1994, The American journal of physiology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
June 1995, The American journal of physiology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
January 1992, Annals of the New York Academy of Sciences,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
November 1990, The Journal of physiology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
July 1993, The Journal of physiology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
February 2006, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
November 1994, The American journal of physiology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
November 1991, The Journal of clinical investigation,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
August 2000, Canadian journal of physiology and pharmacology,
Y Song, and S Thedford, and B B Lerman, and L Belardinelli
July 1995, The American journal of physiology,
Copied contents to your clipboard!