Lysyl-tRNA synthetase from yeast. Discrimination of amino acids by native and phosphorylated species. 1992

W Freist, and H Sternbach, and F Cramer
Max-Planck-Institut für experimentelle Medizin, Göttingen.

Discrimination factors (D) which are characteristic for discrimination between lysine and 19 naturally occurring non-cognate amino acids have been determined from kcat and Km values for native and phosphorylated lysyl-tRNA synthetases from yeast. Generally, both species of this class II aminoacyl-tRNA synthetase are considerably less specific than the class I synthetases specific for isoleucine, valine, tyrosine, and arginine. D values of the native enzyme are in the range 90-1700, D values of the phosphorylated species in the range 40-770. The phosphorylated enzyme acts faster and less accurately. In aminoacylation of tRNALys-C-C-A(2'NH2) discrimination factors D1 vary over 30-980 for the native and over 8-300 for the phosphorylated enzyme. From AMP formation stoichiometry and D1 values pretransfer proof-reading factors (II1) of 1.1-56 were calculated for for the native enzyme, factors of 1.0-44 for the phosphorylated species. Post-transfer proof-reading factors (II2) were calculated from D values and AMP formation stoichiometry in acylation of tRNALys-C-C-A. Pretransfer proof-reading is the main correction step, posttransfer proof-reading is less effective or negligible (II2 approximately 1-8). Initial discrimination factors (I), which are due to differences in Gibbs free energies of binding between lysine and noncognate substrates (delta delta GI), were calculated from discrimination and proof-reading factors. In contrast to class I synthetases, for lysyl-tRNA synthetase only one initial discrimination step can be assumed and amino acid recognition is reduced to a three-step process instead of the four-step recognition observed for the class I synthetases. Plots of delta delta GI values against accessible surface areas of amino acids show clearly that phosphorylation of the enzyme changes the structures of the amino acid binding sites. This is illustrated by a hypothetical 'stopper model' of these sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008250 Lysine-tRNA Ligase An enzyme that activates lysine with its specific transfer RNA. EC 6.1.1.6. Lysyl T RNA Synthetase,Lys-tRNA Ligase,Lysyl-tRNA Synthetase,Ligase, Lys-tRNA,Ligase, Lysine-tRNA,Lys tRNA Ligase,Lysine tRNA Ligase,Lysyl tRNA Synthetase,Synthetase, Lysyl-tRNA
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D000215 Acylation The addition of an organic acid radical into a molecule.
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D012357 RNA, Transfer, Lys A transfer RNA which is specific for carrying lysine to sites on the ribosomes in preparation for protein synthesis. Lysine-Specific tRNA,Transfer RNA, Lys,tRNALys,tRNA(Lys),Lys Transfer RNA,Lysine Specific tRNA,RNA, Lys Transfer,tRNA, Lysine-Specific
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity

Related Publications

W Freist, and H Sternbach, and F Cramer
November 2002, European journal of biochemistry,
W Freist, and H Sternbach, and F Cramer
April 1970, Nature,
W Freist, and H Sternbach, and F Cramer
October 2011, FEBS letters,
W Freist, and H Sternbach, and F Cramer
June 1999, Biochemistry,
W Freist, and H Sternbach, and F Cramer
January 1986, Biochimie,
W Freist, and H Sternbach, and F Cramer
September 1970, Biochimica et biophysica acta,
W Freist, and H Sternbach, and F Cramer
May 1970, Biochemical and biophysical research communications,
W Freist, and H Sternbach, and F Cramer
April 1993, Biokhimiia (Moscow, Russia),
W Freist, and H Sternbach, and F Cramer
August 1995, Biological chemistry Hoppe-Seyler,
W Freist, and H Sternbach, and F Cramer
July 1977, FEBS letters,
Copied contents to your clipboard!