Pyruvate dehydrogenase (PDH) deficiency caused by a 21-base pair insertion mutation in the E1 alpha subunit. 1992

L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
Laboratory of Medical Genetics, Vrije Universiteit Brussel (VUB), Belgium.

We report the molecular characterization of a case of a functional PDH-E1 (E1 subunit of pyruvate dehydrogenase) deficiency, a cause of severe congenital lactic acidosis. Residual PDH-E1 activity was reduced to 10% of normal values, although the subunit appeared to be quantitatively and qualitatively normal at the protein level as determined by Western blotting. The sequence of PDH-E1 alpha mRNA and the corresponding genomic DNA revealed an in-frame 21-bp insertion between codons 305 and 306 of the normal E1 alpha cDNA. The mutational insert commences with a novel GAT codon and is a nearly perfect tandem duplication of the wild type DNA sequence. A serine phosphorylation site regulating the activity of the PDH complex is altered by this insertion, which in all likelihood is responsible for the functional enzymatic deficiency leading to lactic acidosis.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000140 Acidosis, Lactic Acidosis caused by accumulation of lactic acid more rapidly than it can be metabolized. It may occur spontaneously or in association with diseases such as DIABETES MELLITUS; LEUKEMIA; or LIVER FAILURE. Lactic Acidosis
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
June 1994, Human molecular genetics,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
June 1993, Human molecular genetics,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
July 1994, Human molecular genetics,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
January 1994, Human mutation,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
May 1996, Pediatric neurology,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
June 1994, Prenatal diagnosis,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
August 1991, American journal of human genetics,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
January 1992, Journal of inherited metabolic disease,
L De Meirleir, and W Lissens, and E Vamos, and I Liebaers
January 1992, Journal of inherited metabolic disease,
Copied contents to your clipboard!