Structural and biochemical characterization of the Escherichia coli argE gene product. 1992

T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
Laboratoire de Biochimie, Unité de Recherche Associée no. 240, Centre National de la Recherche Scientifique, Palaiseau, France.

The DNA sequence of a 2,100-bp region containing the argE gene from Escherichia coli has been determined. The nucleotide sequence of the ppc-argE intergenic region was also solved and shown to contain six tandemly repeated REP sequences. Moreover, the oxyR gene has been mapped on the E. coli chromosome and shown to flank the arg operon. The codon responsible for the translation start of argE was determined by using site-directed mutants. This gene spans 1,400 bp and encodes a 42,350-Da polypeptide. The argE3 allele and a widely used argE amber gene have also been cloned and sequenced. N-Acetylornithinase, the argE product, has been overproduced and purified to homogeneity. Its main biochemical and catalytic properties are described. Moreover, we demonstrate that the protein is composed of two identical subunits. Finally, the amino acid sequence of N-acetylornithinase is shown to display a high degree of identity with those of the succinyldiaminopimelate desuccinylase from E. coli and carboxypeptidase G2 from a Pseudomonas sp. It is proposed that this carboxypeptidase might be responsible for the acetylornithinase-related activity found in the Pseudomonas sp.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
October 1999, FEMS microbiology letters,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
November 1987, The Journal of biological chemistry,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
January 1989, The Journal of biological chemistry,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
June 1989, The Journal of biological chemistry,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
November 1995, The Journal of biological chemistry,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
September 1987, Journal of general microbiology,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
January 1972, Molecular & general genetics : MGG,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
November 1993, Journal of bacteriology,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
October 1982, The Journal of biological chemistry,
T Meinnel, and E Schmitt, and Y Mechulam, and S Blanquet
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!