Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 DNA with S-(2-chloroethyl)glutathione. Evidence for a role of S-(2-N7-guanyl)ethyl)glutathione as a mutagenic lesion formed from ethylene dibromide. 1992

J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

The major DNA adduct (greater than 95% total) resulting from the bioactivation of ethylene dibromide by conjugation with GSH is S-(2-(N7-guanyl)ethyl)GSH. The mutagenic potential of this adduct has been uncertain, however, because the observed mutagenicity might be caused by other adducts present at much lower levels, e.g. S-(2-N1-adenyl)ethyl)GSH. To assess the formation of other potential adducts, S-(2-(N3-deoxycytidyl)ethyl)GSH, S-(2-(O6-deoxyguanosyl)ethyl)GSH, and S-(2-(N2-deoxyguanosyl)ethyl)GSH were prepared and used as standards in the analysis of calf thymus DNA modified by treatment with [1,2-14C]ethylene dibromide and GSH in the presence of rat liver cytosol; only minor amounts (less than 0.2%) were found. A forward mutation assay in (repair-deficient) Salmonella typhimurium TA100 and sequence analysis were utilized to determine the type, site, and frequency of mutations in a portion of the lacZ gene resulting from in vitro modification of bacteriophage M13mp18 DNA with S-(2-chloroethyl)GSH, an analog of the ethylene dibromide-GSH conjugate. An adduct level of approximately 8 nmol (mg DNA)-1 resulted in a 10-fold increase in mutation frequency relative to the spontaneous level. The spectrum of spontaneous mutations was quite varied, but the spectrum of S-(2-chloroethyl)GSH-induced mutations consisted primarily of base substitutions of which G:C to A:T transitions accounted for 75% (70% of the total mutations). All available evidence implicates S-(2-(N7-guanyl)ethyl)GSH as the cause of these mutations inasmuch as the levels of the minor adducts are not consistent with the mutation frequency observed in this system. The sequence selectivity of alkylation was determined by treatment of end-labeled lac DNA fragments with S-(2-chloroethyl)GSH, cleavage of the DNA at adduct sites, and electrophoretic analysis. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. We suggest that the mechanism of mutagenesis involves DNA sequence-dependent alterations in the interaction of the polymerase with the (modified) template and incoming nucleotide.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015946 Ethylene Dibromide An effective soil fumigant, insecticide, and nematocide. In humans, it causes severe burning of skin and irritation of the eyes and respiratory tract. Prolonged inhalation may cause liver necrosis. It is also used in gasoline. Members of this group have caused liver and lung cancers in rodents. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), 1,2-dibromoethane may reasonably be anticipated to be a carcinogen. 1,2-Dibromoethane,Dowfume W 85,Dowfume W85,Ethylene Bromide,Ethylene Dibromides,sym-Dibromoethane,1,2 Dibromoethane,Bromide, Ethylene,Dibromide, Ethylene,Dibromides, Ethylene,sym Dibromoethane
D018736 DNA Adducts The products of chemical reactions that result in the addition of extraneous chemical groups to DNA. DNA Adduct,Adduct, DNA,Adducts, DNA

Related Publications

J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
April 1998, Chemical research in toxicology,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
October 1997, Chemical research in toxicology,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
April 1986, Biochemistry,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
October 1991, Biochemistry,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
November 1989, Cancer research,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
April 1987, Biochemistry,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
September 1983, Proceedings of the National Academy of Sciences of the United States of America,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
June 1986, Cancer research,
J L Cmarik, and W G Humphreys, and K L Bruner, and R S Lloyd, and C Tibbetts, and F P Guengerich
December 1998, Analytical biochemistry,
Copied contents to your clipboard!