Role in the inspiratory off-switch of vagal inputs to rostral pontine inspiratory-modulated neurons. 2004

Morton I Cohen, and Chen-Fu Shaw
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA. mcohen@aecom.yu.edu

Neurons of the pontine respiratory group (PRG) in the region of the nucleus parabrachialis medialis and the Kolliker-Fuse nucleus are believed to play an important role in promoting the inspiratory (I) off-switch (IOS). In decerebrate gallamine-paralyzed cats ventilated with a cycle-triggered pump system (lung inflation during the neural I phase), we studied the effects of vagal (V) afferent inputs on firing of I-modulated neurons (the most numerous population in PRG) and on I duration. The predominant V effect on unit activity was inhibitory, as shown by two types of test: (a) withholding of inflation during an I phase, which produced increase of unit firing and of its respiratory modulation (58/66 neurons in 14 cats), indicating disinhibition due to removal of phasic V input; (b) delivery of afferent V stimulus trains during a no-inflation I phase, which produced decrease of unit firing and of its respiratory modulation (20 neurons). In addition, application of V input during the neural expiratory (E) phase, which lengthened E phase duration, produced no effect on the neurons' firing, suggesting that the inhibition during I was presynaptic in origin. The results may be interpreted by the hypothesis that the medullary late-I presumptive IOS neurons receive excitatory inputs from the PRG I-modulated neurons as well as from V afferents.. With relatively strong V input, this pontine excitatory output is reduced by inhibition, whereas with relatively weak V input that excitatory output is increased due to reduction of inhibition. Thus the pontine and the V influences on the IOS can operate in a complementary manner dependent on state.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012123 Pulmonary Ventilation The total volume of gas inspired or expired per unit of time, usually measured in liters per minute. Respiratory Airflow,Ventilation Tests,Ventilation, Pulmonary,Expiratory Airflow,Airflow, Expiratory,Airflow, Respiratory,Test, Ventilation,Tests, Ventilation,Ventilation Test
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

Morton I Cohen, and Chen-Fu Shaw
September 1977, Federation proceedings,
Morton I Cohen, and Chen-Fu Shaw
June 2018, Bulletin of experimental biology and medicine,
Morton I Cohen, and Chen-Fu Shaw
November 1982, Respiration physiology,
Morton I Cohen, and Chen-Fu Shaw
January 1995, Clinical and experimental hypertension (New York, N.Y. : 1993),
Morton I Cohen, and Chen-Fu Shaw
July 1993, The American journal of physiology,
Morton I Cohen, and Chen-Fu Shaw
July 1993, The American journal of physiology,
Copied contents to your clipboard!