Use of single-gene reassortant viruses to study the role of avian influenza A virus genes in attenuation of wild-type human influenza A virus for squirrel monkeys and adult human volunteers. 1992

M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
Department of International Health, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland.

The transfer of six internal RNA segments from the avian influenza A/Mallard/New York/6750/78 (H2N2) virus reproducibly attenuates human influenza A viruses for squirrel monkeys and adult humans. To identify the avian influenza A virus genes that specify the attenuation and host range restriction of avian-human (ah) influenza A reassortant viruses (referred to as ah reassortants), we isolated six single-gene reassortant viruses (SGRs), each having a single internal RNA segment of the influenza A/Mallard/New York/6750/78 virus and seven RNA segments from the human influenza A/Los Angeles/2/87 (H3N2) wild-type virus. To assess the level of attenuation, we compared each SGR with the A/Los Angeles/2/87 wild-type virus and a 6-2 gene ah reassortant (having six internal RNA segments from the avian influenza A virus parent and two genes encoding the hemagglutinin and neuraminidase glycoproteins from the wild-type human influenza A virus) for the ability to replicate in seronegative squirrel monkeys and adult human volunteers. In monkeys and humans, replication of the 6-2 gene ah reassortant was highly restricted. In humans, the NS, M, PB2, and PB1 SGRs each replicated significantly less efficiently (P less than 0.05) than the wild-type human influenza A virus parent, suggesting that each of these genes contributes to the attenuation phenotype. In monkeys, only the NP, PB2, and possibly the M genes contributed to the attenuation phenotype. These discordant observations, particularly with regard to the NP SGR, indicate that not all genetic determinants of attenuation of influenza A viruses for humans can be identified during studies of SGRs conducted with monkeys. The PB2 and M SGRs that were attenuated in humans each exhibited a new phenotype that was not observed for either parental virus. Thus, it was not possible to determine whether avian influenza virus PB2 or M gene itself or a specific constellation of avian and human influenza A virus specified restriction of virus replication in humans.

UI MeSH Term Description Entries
D007252 Influenza Vaccines Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The flu vaccines may be mono- or multi-valent, which contains one or more ALPHAINFLUENZAVIRUS and BETAINFLUENZAVIRUS strains. Flu Vaccine,Influenzavirus Vaccine,Monovalent Influenza Vaccine,Universal Flu Vaccine,Universal Influenza Vaccine,Flu Vaccines,High-Dose Trivalent Influenza Vaccine,Influenza Vaccine,Influenza Virus Vaccine,Influenza Virus Vaccines,Influenzavirus Vaccines,Intranasal Live-Attenuated Influenza Vaccine,LAIV Vaccine,Monovalent Influenza Vaccines,Quadrivalent Influenza Vaccine,Trivalent Influenza Vaccine,Trivalent Live Attenuated Influenza Vaccine,Universal Flu Vaccines,Universal Influenza Vaccines,Flu Vaccine, Universal,High Dose Trivalent Influenza Vaccine,Influenza Vaccine, Monovalent,Influenza Vaccine, Quadrivalent,Influenza Vaccine, Trivalent,Influenza Vaccine, Universal,Intranasal Live Attenuated Influenza Vaccine,Vaccine, Flu,Vaccine, Influenza,Vaccine, Influenza Virus,Vaccine, Influenzavirus,Vaccine, LAIV,Vaccine, Monovalent Influenza,Vaccine, Quadrivalent Influenza,Vaccine, Trivalent Influenza,Virus Vaccine, Influenza
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys

Related Publications

M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
September 1982, Infection and immunity,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
December 1982, Science (New York, N.Y.),
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
July 1986, Journal of clinical microbiology,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
December 1984, The Journal of infectious diseases,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
July 1985, The Journal of infectious diseases,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
October 1986, The Journal of infectious diseases,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
May 1986, Journal of clinical microbiology,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
July 1989, Virology,
M L Clements, and E K Subbarao, and L F Fries, and R A Karron, and W T London, and B R Murphy
December 1995, Virus research,
Copied contents to your clipboard!