Wound fluid inhibits wound fibroblast nitric oxide synthesis. 2004

Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
Department of Surgery, Chirurgische Universitätsklinik, Knappschaftskrankenhaus Bochum-Langendreer, Bochum, Germany. michael.schaeffer@kk-bochum.de

BACKGROUND Fibroblast-derived nitric oxide (NO) is an autocrine stimulator of collagen synthesis by wound fibroblasts. Little is known about the in vivo regulation of wound fibroblast NO synthesis. We investigated the net effect of wound environment on wound fibroblast NO production and characterized a soluble factor mediating this effect. METHODS Wound fibroblasts and acellular wound fluid (pool of 100 Lewis rats) were isolated from subcutaneously implanted polyvinyl alcohol sponges harvested 10 days post-wounding. Fibroblasts were incubated in the presence of 10% (v/v) wound fluid. Nitrite, an index of NO synthesis, was measured in supernatants by Griess reagent. RESULTS Wound fibroblasts spontaneously synthesize large amounts of NO. Spontaneous NO synthesis was further increased by LPS + IFN-gamma (P < 0.001). Wound fluid significantly inhibited both spontaneous and LPS plus IFN-gamma-stimulated NO synthesis (by 88 and 55%, respectively; P < 0.01). Wound fluid from 5- to 35-day-old wounds equally suppressed NO synthesis. Separation by Sephadex G-100 gel filtration identified the active factor in wound fluid to have a molecular weight of about 100 kDa. Characterization of this factor showed it to be a heat-resistant (56 degrees C, 30 min), trypsin-sensitive, and neuraminidase-resistant protein (ammonium sulfate precipitation). The isoelectric point appeared to be 7.0, as determined by ion exchange chromatography. Addition of high arginine did not restore the effect of wound fluid on fibroblast NO synthesis, suggesting that substrate is not a limiting factor. CONCLUSIONS Our data demonstrate that following postoperative day 5 the wound environment contains a high molecular weight protein that inhibits NO synthesis by wound fibroblasts.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug

Related Publications

Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
January 1998, Proceedings of the Western Pharmacology Society,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
December 2000, Biochemical and biophysical research communications,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
December 1996, Archives of surgery (Chicago, Ill. : 1960),
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
October 1999, Molecular and cellular biochemistry,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
March 1997, Journal of immunology (Baltimore, Md. : 1950),
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
December 2000, Nitric oxide : biology and chemistry,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
November 1994, Brain research,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
July 2006, Journal of cutaneous pathology,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
January 2004, Neuroimmunomodulation,
Michael R Schäffer, and Udaya Tantry, and Adrian Barbul
June 1997, The American journal of physiology,
Copied contents to your clipboard!