Neuroepithelial bodies not connected to pulmonary slowly adapting stretch receptors. 2004

J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
Department of Medicine, Physiology and Biophysics, Ambulatory Care Building, 3rd floor, University of Louisville, Louisville, KY 40292, USA. j0yu0001@gwise.louisville.edu

Neuroepithelial bodies (NEBs) are believed to be connected with one of the known types of airway receptors. The present studies determined whether NEB afferents are pulmonary slowly adapting stretch receptors (SARs). NEBs are immunoreactive with antibodies against protein gene product (PGP) 9.5 and calcitonin gene-related peptide (CGRP), whereas SARs are reactive with antibody to Na(+)/K(+)-ATPase. Using histochemical staining in combination with confocal microscopy, we compared the morphology of NEBs and SARs in the rat. Our results show that NEBs and SARs are different in location, size, and shape. Double staining of airway tissues for PGP (or CGRP) plus Na(+)/K(+)-ATPase shows that NEBs and SARs do not co-localize. In addition, we electrophysiologically recorded single-unit activity of SARs from the cervical vagus nerve, identified their receptive fields, dissected them into blocks, and then double-stained and examined the receptor structures. We found that the blocks contain the SAR, but not NEB structures. Thus, we conclude that NEBs are not connected to SARs.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011661 Pulmonary Stretch Receptors Stretch receptors found in the bronchi and bronchioles. Pulmonary stretch receptors are sensors for a reflex which stops inspiration. In humans, the reflex is protective and is probably not activated during normal respiration. Receptors, Pulmonary Stretch,Receptors, Stretch, Pulmonary,Stretch Receptors, Pulmonary,Lung Stretch Receptors,Receptors, Stretch, Lung,Stretch Receptors, Lung,Lung Stretch Receptor,Pulmonary Stretch Receptor,Receptor, Lung Stretch,Receptor, Pulmonary Stretch,Receptors, Lung Stretch,Stretch Receptor, Lung,Stretch Receptor, Pulmonary
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
April 2007, Journal of applied physiology (Bethesda, Md. : 1985),
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
August 1991, Journal of applied physiology (Bethesda, Md. : 1985),
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
June 1986, Journal of applied physiology (Bethesda, Md. : 1985),
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
January 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
March 1980, Journal of theoretical biology,
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
November 1985, Journal of applied physiology (Bethesda, Md. : 1985),
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
January 1994, Journal of applied physiology (Bethesda, Md. : 1985),
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
December 1987, Journal of neurophysiology,
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
September 1980, Respiration physiology,
J Yu, and J Zhang, and Y Wang, and F Fan, and A Yu
January 1998, Life sciences,
Copied contents to your clipboard!