Vestibulospinal influences on lower limb motoneurons. 2004

Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. pkennedy@interchange.ubc.ca

Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D006181 H-Reflex A monosynaptic reflex elicited by stimulating a nerve, particularly the tibial nerve, with an electric shock. H Reflex,H-Reflexes,H Reflexes,Reflex, H
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014722 Vestibule, Labyrinth An oval, bony chamber of the inner ear, part of the bony labyrinth. It is continuous with bony COCHLEA anteriorly, and SEMICIRCULAR CANALS posteriorly. The vestibule contains two communicating sacs (utricle and saccule) of the balancing apparatus. The oval window on its lateral wall is occupied by the base of the STAPES of the MIDDLE EAR. Vestibular Apparatus,Ear Vestibule,Vestibular Labyrinth,Vestibule of Ear,Vestibulum Auris,Apparatus, Vestibular,Ear Vestibules,Labyrinth Vestibule,Labyrinth Vestibules,Labyrinth, Vestibular,Labyrinths, Vestibular,Vestibular Labyrinths,Vestibule, Ear,Vestibules, Ear,Vestibules, Labyrinth
D014726 Vestibular Nuclei The four cellular masses in the floor of the fourth ventricle giving rise to a widely dispersed special sensory system. Included is the superior, medial, inferior, and LATERAL VESTIBULAR NUCLEUS. (From Dorland, 27th ed) Schwalbe Nucleus,Vestibular Nucleus, Medial,Schwalbe's Nucleus,Medial Vestibular Nucleus,Nuclei, Vestibular,Nucleus, Medial Vestibular,Nucleus, Schwalbe,Nucleus, Schwalbe's,Schwalbes Nucleus
D035002 Lower Extremity The region of the lower limb in animals, extending from the gluteal region to the FOOT, and including the BUTTOCKS; HIP; and LEG. Extremity, Lower,Lower Limb,Membrum inferius,Extremities, Lower,Limb, Lower,Limbs, Lower,Lower Extremities,Lower Limbs

Related Publications

Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
May 1986, Electromyography and clinical neurophysiology,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
January 1972, Progress in brain research,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
January 1983, Advances in neurology,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
January 1988, Experimental neurology,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
April 1974, Pflugers Archiv : European journal of physiology,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
March 2021, Experimental brain research,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
January 2017, Frontiers in neurology,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
January 1992, Experimental brain research,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
May 1975, Experimental brain research,
Paul M Kennedy, and Andrew G Cresswell, and Romeo Chua, and J Timothy Inglis
October 2005, The Journal of comparative neurology,
Copied contents to your clipboard!