Movements generated by intraspinal microstimulation in the intermediate gray matter of the anesthetized, decerebrate, and spinal cat. 2004

V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
Department of Biomedical Engineering, Centre for Neuroscience, 513 Heritage Medical Research Center, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada. Vivian.mushahwar@ualberta.ca

The intermediate laminae of the lumbosacral spinal cord are suggested to contain a small number of specialized neuronal circuits that form the basic elements of movement construction ("movement primitives"). Our aim was to study the properties and state dependence of these hypothesized circuits in comparison with movements elicited by direct nerve or muscle stimulation. Microwires for intraspinal microstimulation (ISMS) were implanted in intermediate laminae throughout the lumbosacral enlargement. Movement vectors evoked by ISMS were compared with those evoked by stimulation through muscle and nerve electrodes in cats that were anesthetized, then decerebrated, and finally spinalized. Similar movements could be evoked under anesthesia by ISMS and nerve and muscle stimulation, and these covered the full work space of the limb. ISMS-evoked movements were associated with the actions of nearby motoneuron pools. However, after decerebration and spinalization, ISMS-evoked movements were dominated by flexion, with few extensor movements. This indicates that the outputs of neuronal networks in the intermediate laminae depend significantly on descending input and on the state of the spinal cord. Frequently, the outputs also depended on stimulus intensity. These experiments suggest that interneuronal circuits in the intermediate and ventral regions of the spinal cord overlap and their function may be to process reflex and descending activity in a flexible manner for the activation of nearby motoneuron pools.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy

Related Publications

V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
December 2004, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
October 2016, Journal of neural engineering,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
March 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
September 2006, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
January 1970, Acta anatomica,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
May 2023, Journal of voice : official journal of the Voice Foundation,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
December 1980, Experimental neurology,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
March 1979, Life sciences,
V K Mushahwar, and Y Aoyagi, and R B Stein, and A Prochazka
June 2013, Journal of neural engineering,
Copied contents to your clipboard!