ABCA1 expression in carotid atherosclerotic plaques. 2004

C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London, UK.

OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux from cells, a key process in reverse cholesterol transport. Whereas previous investigations focused on mutations causing impaired ABCA1 function, we assessed the role of ABCA1 in human carotid atherosclerotic disease. METHODS We compared the mRNA and protein levels of ABCA1, and one of its key regulators, the liver X receptor alpha (LXRalpha), between minimally and grossly atherosclerotic arterial tissue. We established ABCA1 and LXRalpha gene expression by real-time quantitative polymerase chain reaction in 10 control and 18 atherosclerotic specimens. Presence of ABCA1 protein was assessed by immunoblotting. To determine whether differences observed at a local level were reflected in the systemic circulation, we measured ABCA1 mRNA in leukocytes of 10 patients undergoing carotid endarterectomy and 10 controls without phenotypic atherosclerosis. RESULTS ABCA1 and LXRalpha gene expression were significantly elevated in atherosclerotic plaques (P<0.0001 and 0.03, respectively). The increased mRNA levels of ABCA1 and LXRalpha were correlated in atherosclerotic tissue (r=0.85; P<0.0001). ABCA1 protein expression was significantly reduced in plaques compared with control tissues (P<0.0001). There were no differences in leukocyte ABCA1 mRNA expression (P=0.67). CONCLUSIONS ABCA1 gene and protein are expressed in minimally atherosclerotic human arteries. Despite significant upregulation of ABCA1 mRNA, possibly mediated via LXRalpha, ABCA1 protein is markedly reduced in advanced carotid atherosclerotic lesions. No differences in leukocyte ABCA1 expression were found, suggesting the plaque microenvironment may contribute to the differential ABCA1 expression. We propose that the decreased level of ABCA1 protein is a key factor in the development of atherosclerotic lesions.

UI MeSH Term Description Entries
D008297 Male Males
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071518 Liver X Receptors Nuclear receptors that bind OXYSTEROLS and function as heterodimers with RETINOID X RECEPTORS. They have important functions in regulating cholesterol homeostasis, ENERGY METABOLISM; INFLAMMATION; and the immune response. LXR-Alpha Protein,LXRalpha Protein,LXRbeta Protein,Liver X Receptor,Liver X Receptor Alpha,Liver X Receptor Beta,Liver X Receptor-Alpha,Liver X Receptor-Beta,NR1H2 Protein,NR1H3 Protein,Nuclear Orphan Receptor LXR-Alpha,Nuclear Oxysterol Receptors,Nuclear Receptor Subfamily 1, Group H, Member 2,Nuclear Receptor Subfamily 1, Group H, Member 3,Oxysterols Receptor LXR-Alpha,Oxysterols Receptor LXR-Beta,LXR Alpha Protein,LXR-Alpha, Oxysterols Receptor,LXR-Beta, Oxysterols Receptor,Nuclear Orphan Receptor LXR Alpha,Oxysterol Receptors, Nuclear,Oxysterols Receptor LXR Alpha,Oxysterols Receptor LXR Beta
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016893 Carotid Stenosis Narrowing or stricture of any part of the CAROTID ARTERIES, most often due to atherosclerotic plaque formation. Ulcerations may form in atherosclerotic plaques and induce THROMBUS formation. Platelet or cholesterol emboli may arise from stenotic carotid lesions and induce a TRANSIENT ISCHEMIC ATTACK; CEREBROVASCULAR ACCIDENT; or temporary blindness (AMAUROSIS FUGAX). (From Adams et al., Principles of Neurology, 6th ed, pp 822-3) Carotid Artery Narrowing,Carotid Ulcer,Carotid Artery Plaque,Carotid Artery Stenosis,Carotid Artery Ulcerating Plaque,Common Carotid Artery Stenosis,External Carotid Artery Stenosis,Internal Carotid Artery Stenosis,Plaque, Ulcerating, Carotid Artery,Stenosis, Common Carotid Artery,Stenosis, External Carotid Artery,Ulcerating Plaque, Carotid Artery,Artery Narrowing, Carotid,Artery Narrowings, Carotid,Artery Plaque, Carotid,Artery Plaques, Carotid,Artery Stenoses, Carotid,Artery Stenosis, Carotid,Carotid Artery Narrowings,Carotid Artery Plaques,Carotid Artery Stenoses,Carotid Stenoses,Carotid Ulcers,Narrowing, Carotid Artery,Narrowings, Carotid Artery,Plaque, Carotid Artery,Plaques, Carotid Artery,Stenoses, Carotid,Stenoses, Carotid Artery,Stenosis, Carotid,Stenosis, Carotid Artery,Ulcer, Carotid,Ulcers, Carotid
D057093 Orphan Nuclear Receptors A broad category of receptor-like proteins that may play a role in transcriptional-regulation in the CELL NUCLEUS. Many of these proteins are similar in structure to known NUCLEAR RECEPTORS but appear to lack a functional ligand-binding domain, while in other cases the specific ligands have yet to be identified. Orphan Nuclear Receptor,Nuclear Receptor, Orphan,Nuclear Receptors, Orphan,Receptor, Orphan Nuclear,Receptors, Orphan Nuclear

Related Publications

C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
August 2012, Experimental and therapeutic medicine,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
May 2010, Nuclear medicine communications,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
August 2007, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
November 1999, American heart journal,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
January 2010, Expert opinion on therapeutic targets,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
January 2012, Atherosclerosis,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
December 2004, Journal of cardiovascular pharmacology and therapeutics,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
May 2015, Arteriosclerosis, thrombosis, and vascular biology,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
September 2007, Human pathology,
C Albrecht, and S Soumian, and J S Amey, and A Sardini, and C F Higgins, and A H Davies, and R G J Gibbs
October 2017, Journal of structural biology,
Copied contents to your clipboard!