Display of biologically functional insecticidal toxin on the surface of lambda phage. 2004

Susana Vílchez, and Juliette Jacoby, and David J Ellar
Department of Biochemistry, Cambridge University, Cambridge, United Kingdom.

The successful use of Bacillus thuringiensis insecticidal toxins to control agricultural pests could be undermined by the evolution of insect resistance. Under selection pressure in the laboratory, a number of insects have gained resistance to the toxins, and several cases of resistance in the diamondback moth have been reported from the field. The use of protein engineering to develop novel toxins active against resistant insects could offer a solution to this problem. The display of proteins on the surface of phages has been shown to be a powerful technology to search for proteins with new characteristics from combinatorial libraries. However, this potential of phage display to develop Cry toxins with new binding properties and new target specificities has hitherto not been realized because of the failure of displayed Cry toxins to bind their natural receptors. In this work we describe the construction of a display system in which the Cry1Ac toxin is fused to the amino terminus of the capsid protein D of bacteriophage lambda. The resultant phage was viable and infectious, and the displayed toxin interacted successfully with its natural receptor.

UI MeSH Term Description Entries
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004731 Endotoxins Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells. Endotoxin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006460 Hemolysin Proteins Proteins from BACTERIA and FUNGI that are soluble enough to be secreted to target ERYTHROCYTES and insert into the membrane to form beta-barrel pores. Biosynthesis may be regulated by HEMOLYSIN FACTORS. Hemolysin,Hemolysins,Hemalysins,Proteins, Hemolysin
D000083722 Bacillus thuringiensis Toxins Endotoxins produced by BACILLUS THURINGIENSIS used in transgenic plants and insecticides. When eaten by a susceptible insect they are protease activated in the insect midgut resulting in death from bacterial septicemia. B thuringiensis Toxins,B. thuringiensis Toxins,Bt Toxin,Bt Toxins,Toxin, Bt,Toxins, B thuringiensis,Toxins, B. thuringiensis
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001413 Bacillus thuringiensis A species of gram-positive bacteria which may be pathogenic for certain insects. It is used for the biological control of the Gypsy moth. Bacilan,Dipel,Thuricide

Related Publications

Susana Vílchez, and Juliette Jacoby, and David J Ellar
July 1997, FEBS letters,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
August 1998, Applied and environmental microbiology,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
September 1965, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
May 2006, Journal of invertebrate pathology,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
October 2000, Gene,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
December 1997, Gene,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
February 2005, Journal of biotechnology,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
December 2014, Biomacromolecules,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
August 1993, FEBS letters,
Susana Vílchez, and Juliette Jacoby, and David J Ellar
September 1996, Journal of molecular biology,
Copied contents to your clipboard!