Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked. 2004

Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. mshirasu@stanford.edu

In higher eukaryotes, microtubules (MT) in both halves of the mitotic spindle translocate continuously away from the midzone in a phenomenon called poleward microtubule flux. Because the spindle maintains constant length and microtubule density, this microtubule translocation must somehow be coupled to net MT depolymerization at spindle poles. The molecular mechanisms underlying both flux-associated translocation and flux-associated depolymerization are not well understood, but it can be predicted that blocking pole-based destabilization will increase spindle length, an idea that has not been tested in meiotic spindles. Here, we show that simultaneous addition of two pole-disrupting reagents p50/dynamitin and a truncated version of Xklp2 results in continuous spindle elongation in Xenopus egg extracts, and we quantitatively correlate this elongation rate with the poleward translocation of stabilized microtubules. We further use this system to demonstrate that this poleward translocation requires the activity of the kinesin-related protein Eg5. These results suggest that Eg5 is responsible for flux-associated MT translocation and that dynein and Xklp2 regulate flux-associated microtubule depolymerization at spindle poles.

UI MeSH Term Description Entries
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008941 Spindle Apparatus A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules. Mitotic Apparatus,Mitotic Spindle Apparatus,Spindle Apparatus, Mitotic,Meiotic Spindle,Meiotic Spindle Apparatus,Mitotic Spindle,Apparatus, Meiotic Spindle,Apparatus, Mitotic,Apparatus, Mitotic Spindle,Apparatus, Spindle,Meiotic Spindles,Mitotic Spindles,Spindle Apparatus, Meiotic,Spindle, Meiotic,Spindle, Mitotic,Spindles, Meiotic,Spindles, Mitotic
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D002457 Cell Extracts Preparations of cell constituents or subcellular materials, isolates, or substances. Cell Extract,Extract, Cell,Extracts, Cell
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D000072159 Dynactin Complex A multi-subunit protein of EUKARYOTIC CELLS. It functions in bidirectional intracellular transport of ORGANELLES and CYTOPLASMIC VESICLES by linking them to DYNEIN and KINESIN. 150 kDa Dynein-Associated Protein,Dynactin,Dynactin 1,Dynactin Subunit 1,Dynactin Subunit 2,Dynactin Subunit 3,Dynactin Subunit 4,Dynactin-2,Dynactin-3,Dynactin-4,Dynactins,Dynamitin Protein,Dynein Activator Protein,Dynein-Associated Protein, 150-kDa,p150(Glued),p22 Dynactin Light Chain,p50 Dynamitin,150 kDa Dynein Associated Protein,150-kDa Dynein-Associated Protein,Dynactin 2,Dynactin 3,Dynactin 4,Dynamitin, p50,Dynein Associated Protein, 150 kDa
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin

Related Publications

Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
December 2004, The Journal of cell biology,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
January 1997, Cell motility and the cytoskeleton,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
January 1990, Cell motility and the cytoskeleton,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
June 2010, The Journal of biological chemistry,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
March 1991, The Journal of cell biology,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
November 2002, Molecular biology of the cell,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
March 2005, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
August 2008, The Journal of cell biology,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
February 2010, PloS one,
Mimi Shirasu-Hiza, and Zachary E Perlman, and Torsten Wittmann, and Eric Karsenti, and Timothy J Mitchison
April 2015, Biology of reproduction,
Copied contents to your clipboard!