Comparison of retroviral transduction efficiency in CD34+ cells derived from bone marrow versus G-CSF-mobilized or G-CSF plus stem cell factor-mobilized peripheral blood in nonhuman primates. 2004

Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
Hematology Branch, NHLBI, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.

Hematopoietic stem cells (HSCs) are ideal targets for genetic manipulation in the treatment of several congenital and acquired disorders affecting the hematopoietic compartment. Although G-CSF-mobilized peripheral blood CD34(+) cells are the favored source of hematopoietic stem cells in clinical transplantation, this source of stem cells does not provide meaningful engraftment levels of genetically modified cells compared with G-CSF + stem cell factor (SCF)-mobilized cells in nonhuman primates. Furthermore, the use of G-CSF mobilization can have disastrous consequences in patients with sickle cell disease, a long-held target disorder for HSC-based gene therapy approaches. We therefore conducted a study to compare the levels of genetically modified cells attainable after retroviral transduction of CD34(+) cells collected from a bone marrow (BM) harvest with CD34(+) cells collected from a leukapheresis product after mobilization with G-CSF (n = 3) or G-CSF in combination with SCF (n = 3) in the rhesus macaque autologous transplantation model. Transductions were performed using retroviral vector supernatant on fibronectin-coated plates for 96 hours in the presence of stimulatory cytokines. BM was equal to or better than G-CSF-mobilized peripheral blood as a source of HSCs for retroviral transduction. Although the highest marking observed was derived from G-SCF + SCF-mobilized peripheral blood in two animals, marking in the third originated only from the BM fraction. These results demonstrate that steady-state BM is at least equivalent to G-CSF-mobilized peripheral blood as a source of HSCs for retroviral gene transfer and the only currently available source for patients with sickle cell disease.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000755 Anemia, Sickle Cell A disease characterized by chronic hemolytic anemia, episodic painful crises, and pathologic involvement of many organs. It is the clinical expression of homozygosity for hemoglobin S. Hemoglobin S Disease,HbS Disease,Sickle Cell Anemia,Sickle Cell Disease,Sickle Cell Disorders,Sickling Disorder Due to Hemoglobin S,Anemias, Sickle Cell,Cell Disease, Sickle,Cell Diseases, Sickle,Cell Disorder, Sickle,Cell Disorders, Sickle,Disease, Hemoglobin S,Hemoglobin S Diseases,Sickle Cell Anemias,Sickle Cell Diseases,Sickle Cell Disorder
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
March 2003, Blood,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
August 2006, Molecular therapy : the journal of the American Society of Gene Therapy,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
July 1996, Stem cells (Dayton, Ohio),
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
April 1997, British journal of haematology,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
January 2001, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
January 2004, Blood cells, molecules & diseases,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
June 1997, Bone marrow transplantation,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
January 2014, BioMed research international,
Peiman Hematti, and Sascha Tuchman, and Andre Larochelle, and Mark E Metzger, and Robert E Donahue, and John F Tisdale
October 2002, Zhonghua yi xue za zhi,
Copied contents to your clipboard!