A sequence within the first transmembrane domain of PEN-2 is critical for PEN-2-mediated endoproteolysis of presenilin 1. 2005

Seong-Hun Kim, and Sangram S Sisodia
Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Chicago, Illinois 60637, USA.

Macromolecular complexes containing presenilins (PS), nicastrin (NCT), APH-1, and PEN-2 mediate the gamma-secretase cleavage of the beta-amyloid precursor protein and Notch. APH-1 and NCT stabilize the PS1 holoprotein, whereas PEN-2 is critical for endoproteolysis of PS1. To define the structural domains of PEN-2 that are necessary for mediating PS1 endoproteolysis and gamma-secretase activity, we coexpressed APH-1, NCT, and PS1 together with a series of PEN-2 mutants, which harbored deletions in hydrophilic segments, or chimeric PEN-2 molecules that contained heterologous transmembrane domains (TMDs). We now report that with the exception of the PEN-2 variants with deletions proximal to the TMDs, the vast majority of the deletion variants were functional. Mutants that were nonfunctional were also unstable but were rescued by transposition of a heterologous sequence containing conservative amino acid substitutions into the deleted region. Notably, the carboxyl-terminal hydrophilic domain of PEN-2 was dispensable for promoting PS1 endoproteolysis but was critical for stabilizing the resulting PS1 derivatives. More importantly, we demonstrated that a chimeric PEN-2 with a replacement of the TMD2 with the TMD1 from sterol regulatory element binding protein 1 (SREBP-1) is fully functional but that a chimeric PEN-2 with a replacement of the TMD1 with the TMD2 from SREBP-1 is not. The function of this latter chimera was rescued by the replacement of the proximal two-thirds of the SREBP-1 TMD2 with the proximal two-thirds of the authentic TMD1 from PEN-2. These results suggest that the proximal two-thirds of the PEN-2 TMD1 is functionally important for endoproteolysis of PS1 holoproteins and the generation of PS1 fragments, essential components of the gamma-secretase complex.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016282 Aspartic Acid Endopeptidases A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity. Aspartic Endopeptidases,Aspartyl Endopeptidases,Acid Endopeptidases, Aspartic,Endopeptidases, Aspartic Acid,Endopeptidases, Aspartyl
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions
D047468 Immunoprecipitation The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution. Co-Immunoprecipitation,Immune Precipitation,Co Immunoprecipitation,Co-Immunoprecipitations,Immune Precipitations,Precipitation, Immune,Precipitations, Immune
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Seong-Hun Kim, and Sangram S Sisodia
December 2005, The Journal of biological chemistry,
Seong-Hun Kim, and Sangram S Sisodia
October 2005, The Journal of biological chemistry,
Seong-Hun Kim, and Sangram S Sisodia
November 2005, The Biochemical journal,
Seong-Hun Kim, and Sangram S Sisodia
May 1997, The Journal of biological chemistry,
Seong-Hun Kim, and Sangram S Sisodia
December 2001, Nature cell biology,
Seong-Hun Kim, and Sangram S Sisodia
October 2011, The EMBO journal,
Seong-Hun Kim, and Sangram S Sisodia
January 2018, Frontiers in molecular neuroscience,
Copied contents to your clipboard!