Influence of supplemental cracked high-linoleate or high-oleate safflower seeds on site and extent of digestion in beef cattle. 2004

E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
Department of Animal Science, University of Wyoming, Laramie 82071-3684, USA.

Our objectives were to evaluate ruminal fermentation patterns, apparent ruminal biohydrogenation, and site and extent of nutrient disappearance in cattle fed supplemental cracked safflower seeds differing in 18 C fatty acid profile. Nine Angus x Gelbvieh heifers (641 +/- 9.6 kg) fitted with ruminal and duodenal cannulas were used in a triplicated 3 x 3 Latin square. Cattle were fed (OM basis) 9.1 kg of bromegrass hay and either 1) 1.8 kg of corn and 0.20 kg of soybean meal (Control); 2) 0.13 kg of soybean meal and 1.5 kg of cracked high-linoleate (67.2% 18:2) safflower seeds (Linoleate); or 3) 1.5 kg of cracked high-oleate (72.7% 18:1) safflower seeds (Oleate). Safflower seed supplements were formulated to provide similar quantities of N and TDN and 5% dietary fat. Single degree of freedom orthogonal contrasts (Control vs. Linoleate and Oleate; Linoleate vs. Oleate) were used to evaluate treatment effects. True ruminal OM and ruminal NDF disappearances (percentage of intake) were greater (P < or =0.02) for Control than Linoleate and Oleate. True ruminal N degradability (% of intake) was not different (P = 0.38) among treatments. Apparent ruminal biohydrogenation of dietary 18:2 was greatest (Linoleate vs. Oleate, P < 0.001) for Linoleate, whereas biohydrogenation of dietary 18:1 was greatest (Linoleate vs. Oleate, P = 0.02) for Oleate. Duodenal flow of 18:0 was least (P < 0.001) for Control but did not differ (P = 0.92) between Oleate and Linoleate. Total flow of unsaturated fatty acid to the duodenum was greatest (P < 0.001) in cattle fed safflower seeds, and was greater with Linoleate (P < 0.001) than with Oleate. Duodenal flow of 18:1 and 18:2 increased (P < 0.001) in Oleate and Linoleate, respectively. Duodenal flow of 18:1trans-11 was greater (P < 0.001) in cattle fed safflower seeds and in Linoleate than in Oleate. Postruminal disappearance of saturated fatty acids was greatest (P < 0.001) for Control; however, postruminal disappearance of total unsaturated fatty acids was greater (P = 0.002) for Linoleate vs. Oleate. Supplemental high-linoleate or high-oleate safflower seeds to cattle fed forage-based diets may negatively affect ruminal OM and fiber disappearance but not N disappearance. Provision of supplemental fat in the form of safflower seeds that are high in linoleic acid increased intestinal supply and postruminal disappearance of unsaturated fatty acids, indicating that the fatty acids apparently available for metabolism are affected by dietary fat source.

UI MeSH Term Description Entries
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004043 Dietary Fiber The remnants of plant cell walls that are resistant to digestion by the alimentary enzymes of man. It comprises various polysaccharides and lignins. Fiber, Dietary,Roughage,Wheat Bran,Bran, Wheat,Brans, Wheat,Dietary Fibers,Fibers, Dietary,Roughages,Wheat Brans
D004063 Digestion The process of breakdown of food for metabolism and use by the body.
D005232 Fatty Acids, Volatile Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans. Fatty Acids, Short-Chain,Short-Chain Fatty Acid,Volatile Fatty Acid,Acid, Short-Chain Fatty,Acid, Volatile Fatty,Fatty Acid, Short-Chain,Fatty Acid, Volatile,Fatty Acids, Short Chain,Short Chain Fatty Acid,Short-Chain Fatty Acids,Volatile Fatty Acids
D005260 Female Females
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional

Related Publications

E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
March 2002, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
April 1995, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
August 2002, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
July 1987, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
September 2008, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
October 2001, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
June 1999, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
December 1979, Federation proceedings,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
September 2018, Journal of animal science,
E J Scholljegerdes, and B W Hess, and G E Moss, and D L Hixon, and D C Rule
October 2012, Journal of animal science,
Copied contents to your clipboard!