Isolation, characterization, and extra-embryonic secretion of the Xenopus laevis embryonic epidermal lectin, XEEL. 2005

Saburo Nagata
Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyoku, Tokyo 112-8681, Japan. s-nagata@fc.jwu.ac.jp

The Xenopus laevis embryonic epidermal lectin (XEEL) is a novel member of a group of lectins including mammalian intelectins, frog oocyte cortical granule lectins, and plasma lectins in lower vertebrates and ascidians. We isolated the XEEL protein from the extract of tailbud embryos by affinity chromatography on a galactose-Sepharose column. The XEEL protein is a homohexamer of 43-kDa N-glycosylated peptide subunits linked by disulfide bonds. It requires Ca(2+) for saccharide binding and shows a higher affinity to pentoses than hexoses and disaccharides. HEK-293T cells transfected with an expression vector containing the XEEL cDNA secrete into the culture medium the recombinant XEEL (rXEEL) that is similar to the purified XEEL in its molecular nature and saccharide-binding properties. Substitution of Asn-192 to Gln removed the N-linked carbohydrate and inhibited secretion of rXEEL but did not abolish the activity to bind to galactose-Sepharose. The embryo's XEEL content, as estimated by western blot analyses, increases during neurula/tailbud stages and declines after 1 week postfertilization. Immunofluorescence and immuno-electron microscopic analyses showed localization of the XEEL protein in a typical secretory granule pathway of nonciliated epidermal cells. When tailbud embryos were cultured in the standard medium, XEEL was accumulated in the medium, indicating secretion of XEEL into the environmental water. The rate of XEEL secretion greatly increased at around the hatching stage and stayed at a high level during the first week after hatching. XEEL may have a role in innate immunity to protect embryos and larvae against pathogenic microorganisms in the environmental water.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D050260 Carbohydrate Metabolism Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES. Metabolism, Carbohydrate

Related Publications

Saburo Nagata
September 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Saburo Nagata
February 1986, The Journal of cell biology,
Saburo Nagata
March 1964, Experimental cell research,
Saburo Nagata
August 1981, European journal of biochemistry,
Saburo Nagata
December 1990, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
Saburo Nagata
March 1984, Molecular and cellular biology,
Saburo Nagata
October 1997, Archives of biochemistry and biophysics,
Saburo Nagata
February 1981, Archives of biochemistry and biophysics,
Copied contents to your clipboard!