Role of neurokinin 3 receptors in supraoptic vasopressin and oxytocin neurons. 2004

Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.

Neurokinin 3 receptors (NK3-Rs) are expressed in the supraoptic nucleus (SON), and SON is innervated by substance P (SP)-expressing A1 neurons in the medulla. Because SP stimulates vasopressin (VP) and oxytocin release from explants of the hypothalamo-neurohypophyseal system (HNS), two hypotheses were tested: (1) SP-stimulated VP release is mediated by NK3-Rs, and (2) stimulation of the A1 pathway by hypotension activates SON NK3-Rs. Senktide, an NK3-R agonist, stimulated VP release from HNS explants, but neither a neurokinin 1 receptor antagonist [L732,138 (N-acetyl-L-tryptophan 3,5-bis(tri-fluoromethyl)benzyl ester)] nor two NK3-R antagonists (SB222200 and SB235375) prevented SP-stimulated VP release. Because the affinity of these antagonists for rat NK-Rs may limit their efficacy, NK3-R internalization was used to assess the ability of SP to activate SON NK3-Rs. Senktide, SP, or vehicle was microinjected above SON. The brain was perfused 5 min after injection and stained for NK3-R immunoreactivity. Using confocal microscopy, the number of NK3-R-immunoreactive (-IR) endosomes was counted in a 5.6(2) mu region of cytoplasm in SON neurons. Senktide, but not SP or vehicle, significantly increased the number of NK3-R-IR endosomes in the cytoplasm. When hypotension was induced with hydralazine, NK3-R internalization was observed within 5 min (p < 0.005). A decrease in cytoplasmic NK3-R immunoreactivity was observed within 15 min of hypotension. Unexpectedly, both senktide and hypotension resulted in translocation of NK3-R-IR immunoreactivity to the nucleus. Thus, although these studies do not identify SP as the NK3-R ligand, they do provide evidence for hypotension-induced release of an endogenous tachykinin in SON and evidence suggesting a role for NK3-Rs in transcription regulation.

UI MeSH Term Description Entries
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D007032 Hypothalamus, Anterior The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS. Hypothalamus, Supraoptic,Anterior Hypothalamic Commissure,Anterior Hypothalamic Decussation of Ganser,Anteroventral Periventricular Nucleus,Anterior Hypothalamic Commissures,Anterior Hypothalamus,Commissure, Anterior Hypothalamic,Commissures, Anterior Hypothalamic,Hypothalamic Commissure, Anterior,Hypothalamic Commissures, Anterior,Nucleus, Anteroventral Periventricular,Periventricular Nucleus, Anteroventral,Supraoptic Hypothalamus
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011804 Quinolines
D011992 Endosomes Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface. Receptosomes,Endosome,Receptosome

Related Publications

Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
January 2002, Progress in brain research,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
May 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
January 1998, Advances in experimental medicine and biology,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
October 1991, Endocrinology,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
April 2014, American journal of physiology. Regulatory, integrative and comparative physiology,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
August 2007, The Journal of physiology,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
February 2013, Journal of neurophysiology,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
June 1998, Neuroscience,
Heather E Howe, and Suwit J Somponpun, and Celia D Sladek
June 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
Copied contents to your clipboard!