Testosterone down-regulates ornithine aminotransferase gene and up-regulates arginase II and ornithine decarboxylase genes for polyamines synthesis in the murine kidney. 2005

Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
Université Claude Bernard, Faculté de Médecine Lyon RTH Laennec, U 499 Institut National de la Santé et de la Recherche Médicale, 7, rue G. Paradin, 69372 Lyon Cedex 08, France. Olivier.Levillain@laennec.univ-lyon1.fr

The enzymes ornithine aminotransferase (OAT) and ornithine decarboxylase (ODC) share L-ornithine as a common substrate and arginase II produces this amino acid. In the murine kidney, testosterone induced ODC gene expression and polyamine production, but it is unknown how OAT gene is expressed under androgen treatment. These experiments were designed to study the influence of testosterone on the renal expression of OAT gene. Pharmacological and physiological doses of testosterone were injected into female and castrated male mice. Total RNA and soluble proteins extracted from whole kidneys were analyzed by Northern and Western blots, respectively. The results clearly indicate that pharmacological doses of testosterone simultaneously down-regulated the level of OAT protein and up-regulated the expression of arginase II and ODC genes. Variations of the levels of OAT protein and arginase II mRNA and protein were strongly correlated with testosteronemia. Orchidectomy increased the renal level of OAT protein and decreased that of ODC and arginase II. These effects were reversed by injecting a physiological dose of testosterone into castrated male mice. In conclusion, OAT and ODC genes are inversely regulated by testosterone in the mouse kidney. Consequently, in kidneys of testosterone-treated mice, L-arginine-derived ornithine produced by arginase II might be preferentially used by ODC for putrescine production rather than by OAT. This metabolic fate of L-ornithine was facilitated by decreasing OAT gene expression. In contrast, in female and castrated male mice devoided of testosterone, OAT gene is highly expressed and L-ornithine is converted into L-glutamate.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D009953 Ornithine-Oxo-Acid Transaminase A pyridoxal phosphate enzyme that catalyzes the formation of glutamate gamma-semialdehyde and an L-amino acid from L-ornithine and a 2-keto-acid. EC 2.6.1.13. Ornithine Aminotransferase,Ornithine Transaminase,L-Ornithine-2-Oxo-Acid Aminotransferase,L-Ornithine-2-Oxoglutarate Aminotransferase,Ornithine Ketoacid Aminotransferase,Ornithine-2-Ketoglutarate Aminotransferase,Ornithine-Keto-Acid-Transaminase,Ornithine-Ketoacid-Transaminase,Pyrroline-5-Carboxylate Synthase,Aminotransferase, L-Ornithine-2-Oxo-Acid,Aminotransferase, L-Ornithine-2-Oxoglutarate,Aminotransferase, Ornithine,Aminotransferase, Ornithine Ketoacid,Aminotransferase, Ornithine-2-Ketoglutarate,Ketoacid Aminotransferase, Ornithine,L Ornithine 2 Oxo Acid Aminotransferase,L Ornithine 2 Oxoglutarate Aminotransferase,Ornithine 2 Ketoglutarate Aminotransferase,Ornithine Keto Acid Transaminase,Ornithine Ketoacid Transaminase,Ornithine Oxo Acid Transaminase,Pyrroline 5 Carboxylate Synthase,Synthase, Pyrroline-5-Carboxylate,Transaminase, Ornithine,Transaminase, Ornithine-Oxo-Acid
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D005260 Female Females
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
January 1994, Biology of the neonate,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
April 2004, American journal of physiology. Renal physiology,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
October 1993, FEBS letters,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
January 2011, American journal of physiology. Endocrinology and metabolism,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
January 1982, Enzyme,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
July 1994, Journal of pediatric gastroenterology and nutrition,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
May 1992, The Journal of nutrition,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
July 1986, Biochemistry international,
Olivier Levillain, and Jean-Jacques Diaz, and Odile Blanchard, and Henri Déchaud
August 1992, Biochemistry international,
Copied contents to your clipboard!