Actin activation of myosin heavy chain kinase A in Dictyostelium: a biochemical mechanism for the spatial regulation of myosin II filament disassembly. 2005

Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.

Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
September 1999, European journal of biochemistry,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
December 2002, Molecular biology of the cell,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
May 1992, The Journal of biological chemistry,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
May 2001, Current biology : CB,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
January 1991, Methods in enzymology,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
March 1997, The Journal of biological chemistry,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
May 2001, The Journal of biological chemistry,
Thomas T Egelhoff, and Daniel Croft, and Paul A Steimle
April 2006, The Biochemical journal,
Copied contents to your clipboard!