Generation of resting membrane potential. 2004

Stephen H Wright
Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA. shwright@u.arizona.edu

This brief review is intended to serve as a refresher on the ideas associated with teaching students the physiological basis of the resting membrane potential. The presentation is targeted toward first-year medical students, first-year graduate students, or senior undergraduates. The emphasis is on general concepts associated with generation of the electrical potential difference that exists across the plasma membrane of every animal cell. The intention is to provide students a general view of the quantitative relationship that exists between 1) transmembrane gradients for K(+) and Na(+) and 2) the relative channel-mediated permeability of the membrane to these ions.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010827 Physiology The biological science concerned with the life-supporting properties, functions, and processes of living organisms or their parts.
D002468 Cell Physiological Phenomena Cellular processes, properties, and characteristics. Cell Physiological Processes,Cell Physiology,Cell Physiological Phenomenon,Cell Physiological Process,Physiology, Cell,Phenomena, Cell Physiological,Phenomenon, Cell Physiological,Physiological Process, Cell,Physiological Processes, Cell,Process, Cell Physiological,Processes, Cell Physiological
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Stephen H Wright
January 1973, Physiological chemistry and physics,
Stephen H Wright
March 1966, Science (New York, N.Y.),
Stephen H Wright
November 1972, Journal of theoretical biology,
Stephen H Wright
August 1974, Comparative biochemistry and physiology. A, Comparative physiology,
Stephen H Wright
December 2002, Advances in physiology education,
Stephen H Wright
September 1993, Journal of pediatric surgery,
Stephen H Wright
August 1965, Diabetes,
Stephen H Wright
December 1979, The Journal of physiology,
Stephen H Wright
November 1994, Journal of reproduction and fertility,
Stephen H Wright
October 1975, Comparative biochemistry and physiology. A, Comparative physiology,
Copied contents to your clipboard!