The role of type I interferons in non-viral infections. 2004

Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene, University of Freiburg, Freiburg, Germany. christian.bogdan@uniklinik-freiburg.de

For a long time, the family of type I interferons (IFN-alpha/beta) has received little attention outside the fields of virology and tumor immunology. In recent years, IFN-alpha/beta regained the interest of immunologists, due to the phenotypic and functional characterization of IFN-alpha/beta-producing cells, the definition of novel immunomodulatory functions and signaling pathways of IFN-alpha/beta, and the observation that IFN-alpha/beta not only exerts antiviral effects but is also relevant for the pathogenesis or control of certain bacterial and protozoan infections. This review summarizes the current knowledge on the production and function of IFN-alpha/beta during non-viral infections in vitro and in vivo.

UI MeSH Term Description Entries
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D003141 Communicable Diseases An illness caused by an infectious agent or its toxins that occurs through the direct or indirect transmission of the infectious agent or its products from an infected individual or via an animal, vector or the inanimate environment to a susceptible animal or human host. Infectious Diseases,Communicable Disease,Disease, Communicable,Disease, Infectious,Diseases, Communicable,Diseases, Infectious,Infectious Disease
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012550 Schistosoma mansoni A species of trematode blood flukes of the family Schistosomatidae. It is common in the Nile delta. The intermediate host is the planorbid snail. This parasite causes schistosomiasis mansoni and intestinal bilharziasis. Schistosoma mansonus,mansonus, Schistosoma
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D056890 Eukaryota One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista. Eukaryotes,Eucarya,Eukarya,Eukaryotas,Eukaryote

Related Publications

Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
March 2024, Viruses,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
June 2023, International journal of molecular sciences,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
May 1964, Postgraduate medicine,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
August 1984, European journal of clinical microbiology,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
January 2009, BioFactors (Oxford, England),
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
February 2016, Current opinion in virology,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
June 2010, Biotechnology journal,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
April 1996, Journal of leukocyte biology,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
January 2007, Immunology and cell biology,
Christian Bogdan, and Jochen Mattner, and Ulrike Schleicher
January 2016, Frontiers in immunology,
Copied contents to your clipboard!