Crystal structure of thrombin bound to heparin. 2005

Wendy J Carter, and Evis Cama, and James A Huntington
University of Cambridge, Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom.

Thrombin is the final protease in the blood coagulation cascade and serves both pro- and anticoagulant functions through the cleavage of several targets. The ability of thrombin to specifically recognize a wide range of substrates derives from interactions that occur outside of the active site of thrombin. Thrombin possesses two anion binding exosites, which mediate many of its interactions with cofactors and substrates, and although many structures of thrombin have been solved, few such interactions have been described in molecular detail. Glycosaminoglycan binding to exosite II of thrombin plays a major role in switching off the procoagulant functions of thrombin by mediating its irreversible inhibition by circulating serpins and by its binding to the endothelial cell surface receptor thrombomodulin. Here we report the 1.85-A structure of human alpha-thrombin bound to a heparin fragment of eight monosaccharide units in length. The asymmetric unit is composed of two thrombin dimers, each sharing a single heparin octasaccharide chain. The observed interactions are fully consistent with previous mutagenesis studies and illustrate on a molecular level the cofactor interaction that is critical for the restriction of clotting to the site of blood vessel injury.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009005 Monosaccharides Single chain carbohydrates that are the most basic units of CARBOHYDRATES. They are typically colorless crystalline substances with a sweet taste and have the same general formula CnH2nOn. Monosaccharide,Simple Sugar,Simple Sugars,Sugar, Simple,Sugars, Simple
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

Wendy J Carter, and Evis Cama, and James A Huntington
December 2008, RNA (New York, N.Y.),
Wendy J Carter, and Evis Cama, and James A Huntington
May 2010, The Journal of biological chemistry,
Wendy J Carter, and Evis Cama, and James A Huntington
July 2003, Biochemistry,
Wendy J Carter, and Evis Cama, and James A Huntington
October 2000, Nature,
Wendy J Carter, and Evis Cama, and James A Huntington
January 1996, The Journal of thoracic and cardiovascular surgery,
Wendy J Carter, and Evis Cama, and James A Huntington
September 2007, Journal of the American Chemical Society,
Wendy J Carter, and Evis Cama, and James A Huntington
June 2008, Nucleic acids research,
Wendy J Carter, and Evis Cama, and James A Huntington
October 2016, Acta crystallographica. Section F, Structural biology communications,
Wendy J Carter, and Evis Cama, and James A Huntington
August 2002, Journal of biochemistry,
Wendy J Carter, and Evis Cama, and James A Huntington
January 1997, Advances in experimental medicine and biology,
Copied contents to your clipboard!