Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. 1994

M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA.

A new formulation of a tissue-equivalent polymer-gel dosimeter for the measurement of three-dimensional dose distributions of ionizing radiation has been developed. It is composed of aqueous gelatin infused with acrylamide and N, N'-methylene-bisacrylamide monomers, and made hypoxic by nitrogen saturation. Irradiation of the gel, referred to as BANG, causes localized polymerization of the monomers, which, in turn, reduces the transverse NMR relaxation times of water protons. The dose dependence of the NMR transverse relaxation rate, R2, is reproducible (less than 2% variation) and is linear up to about 8 Gy, with a slope of 0.25 s(-1)Gy(-1) at 1.5 T. Magnetic resonance imaging may be used to obtain accurate three-dimensional dose distributions with high spatial resolution. Since the radiation-induced polymers do not diffuse through the gelatin matrix, the dose distributions recorded by BANG gels are stable for long periods of time, and may be used to measure low-activity radioactive sources. Since the light-scattering properties of the polymerized regions are different from those of the clear, non-irradiated regions, the dose distributions are visible, and their optical densities are dependent on dose.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D012062 Relative Biological Effectiveness The ratio of radiation dosages required to produce identical change based on a formula comparing other types of radiation with that of gamma or roentgen rays. Biological Effectiveness, Relative,Effectiveness, Biologic Relative,Effectiveness, Biological Relative,Relative Biologic Effectiveness,Biologic Effectiveness, Relative,Biologic Relative Effectiveness,Biological Relative Effectiveness,Effectiveness, Relative Biologic,Effectiveness, Relative Biological,Relative Effectiveness, Biologic
D001822 Body Burden The total amount of a chemical, metal or radioactive substance present at any time after absorption in the body of man or animal. Body Burdens,Burden, Body,Burdens, Body
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D002588 Cesium Radioisotopes Unstable isotopes of cesium that decay or disintegrate emitting radiation. Cs atoms with atomic weights of 123, 125-132, and 134-145 are radioactive cesium isotopes. Radioisotopes, Cesium
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic

Related Publications

M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
August 2005, Physics in medicine and biology,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
January 2023, Journal of X-ray science and technology,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
July 1997, International journal of radiation oncology, biology, physics,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
January 2024, Journal of X-ray science and technology,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
December 2001, Physics in medicine and biology,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
November 2001, Medical physics,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
January 1997, Acta oncologica (Stockholm, Sweden),
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
October 1999, Physics in medicine and biology,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
January 2012, Igaku butsuri : Nihon Igaku Butsuri Gakkai kikanshi = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics,
M J Maryanski, and R J Schulz, and G S Ibbott, and J C Gatenby, and J Xie, and D Horton, and J C Gore
October 1984, Physics in medicine and biology,
Copied contents to your clipboard!