Tau interaction with microtubules in vivo. 2004

Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
Department of Physiology and Biophysics M/C 901, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.

Tau is a major microtubule-associated protein which induces bundling and stabilization of axonal microtubules (MTs). To investigate the interaction of tau with MTs in living cells, we expressed GFP-tau fusion protein in cultured Xenopus embryo neurons and performed time-lapse imaging of tau-labeled MTs. Tau uniformly labeled individual MTs regardless of their assembly/disassembly status and location along the axon. Photobleaching experiments indicated that interaction of tau with MTs is very dynamic, with a half-time of fluorescence recovery of the order of 3 seconds. Treatment of cells with taxol, a drug that suppresses MT dynamics, rapidly induced detachment of tau from MTs. Although binding of tau to straight MTs was uniform, there was a heightened concentration of tau at the sites of high MT curvature. Our results suggest that dynamic interaction of tau with MTs may modify local mechanical properties of individual MTs and play a crucial role in the remodeling of the MT cytoskeleton during neuronal plasticity.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic

Related Publications

Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
January 2017, Methods in molecular biology (Clifton, N.J.),
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
July 2005, Journal of cell science,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
November 1998, Cellular and molecular biology (Noisy-le-Grand, France),
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
March 2012, Biochimie,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
January 1993, Cell motility and the cytoskeleton,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
June 2000, Journal of neurochemistry,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
January 1995, Neurobiology of aging,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
November 2014, Molecular biology of the cell,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
August 1998, Zoological science,
Andrey Samsonov, and Jiang-Zhou Yu, and Mark Rasenick, and Sergey V Popov
January 1986, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!