Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in skeletal muscle from humans susceptible to malignant hyperthermia. 2004

Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
School of Biomedical Sciences, University of Leeds, United Kingdom.

BACKGROUND Recent work suggests that impaired Mg(2+) regulation of the ryanodine receptor is a common feature of both pig and human malignant hyperthermia. Therefore, the influence of [Mg(2+)] on halothane-induced Ca(2+) release from the sarcoplasmic reticulum was studied in malignant hyperthermia-susceptible (MHS) or -nonsusceptible (MHN) muscle. METHODS Vastus medialis fibers were mechanically skinned and perfused with solutions containing physiologic (1 mm) or reduced concentrations of free [Mg(2+)]. Sarcoplasmic reticulum Ca(2+) release was detected using fura-2 or fluo-3. RESULTS In MHN fibers, 1 mm halothane consistently did not induce sarcoplasmic reticulum Ca(2+) release in the presence of 1 mm Mg(2+). It was necessary to increase the halothane concentration to 20 mm or greater before Ca release occurred. However, when [Mg(2+)] was reduced below 1 mm, halothane became an increasingly effective stimulus for Ca(2+) release; e.g., at 0.4 mm Mg(2+), 58% of MHN fibers responded to halothane. In MHS fibers, 1 mm halothane induced Ca(2+) release in 57% of MHS fibers at 1 mm Mg(2+). Reducing [Mg(2+)] increased the proportion of MHS fibers that responded to 1 mm halothane. Further experiments revealed differences in the characteristics of halothane-induced Ca(2+) release in MHS and MHN fibers: In MHN fibers, at 1 mm Mg(2+), halothane induced a diffuse increase in [Ca(2+)], which began at the periphery of the fiber and spread slowly inward. In MHS fibers, halothane induced a localized C(2+)a release, which then propagated along the fiber. However, propagated Ca(2+) release was observed in MHN fibers when halothane was applied at an Mg(2+) concentration of 0.4 mm or less. CONCLUSIONS When Mg(2+) inhibition of the ryanodine receptor is reduced, the halothane sensitivity of MHN fibers and the characteristics of the Ca release process approach that of the MHS phenotype. In MHS fibers, reduced Mg(2+) inhibition of the ryanodine receptor would be expected to have a major influence on halothane sensitivity. The Mg dependence of the halothane response in MHN and MHS may have important clinical implications in circumstances where intracellular [Mg(2+)] deviates from normal physiologic concentrations.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008305 Malignant Hyperthermia Rapid and excessive rise of temperature accompanied by muscular rigidity following general anesthesia. Hyperpyrexia, Malignant,Hyperthermia, Malignant,Malignant Hyperpyrexia,Anesthesia Related Hyperthermia,Hyperthermia of Anesthesia,Anesthesia Hyperthermia,Hyperthermia, Anesthesia Related,Malignant Hyperpyrexias
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
September 1983, FEBS letters,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
May 2000, Anesthesiology,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
November 1986, Biochimica et biophysica acta,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
May 1991, Biochimica et biophysica acta,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
September 1983, The Journal of clinical investigation,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
November 1994, The American journal of physiology,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
November 1985, Biochimica et biophysica acta,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
April 1990, Biochemical Society transactions,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
June 2001, Biochemical pharmacology,
Adrian M Duke, and Philip M Hopkins, and Jane P Halsal, and Derek S Steele
January 2018, The Journal of general physiology,
Copied contents to your clipboard!