pH imaging. A review of pH measurement methods and applications in cancers. 2004

Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
Department of Biochemistry, Arizona Cancer Center, Tucson 85724-5024, USA. rgillies@email.arizona.edu

Acid-base balance is altered in a variety of common pathologies, including COPD, ischemia, renal failure, and cancer. Because of robust cellular pH homeostatic mechanisms, most of the pathological alterations in pH are expressed as changes in the extracellular, systemic pH. There are data to indicate that altered pH is not simply an epiphenomenon of metabolic or physiologic imbalance but that chronic pH alterations can have important sequelae. MRSI and MRI measurements indicate that pH gradients of up to 1.0 pH unit can exit within 1-cm distance. Although measurement of blood pH can indicate systemic problems, it cannot pinpoint the lesion or quantitatively assess the magnitude of excursion from normal pHe. Hence, there is a need to develop pHe measurement methods with high spatiotemporal resolution. The two major approaches being investigated include magnetization transfer methods and relaxation methods. pH-dependent MT effects can observed with endogenous signals or exogenously applied CEST agents. While endogenous signals have the advantage of being fully noninvasive and relatively straightforward to apply, they lack a full biophysical characterization and dynamic range that might be afforded by future CEST agents. pH-dependent relaxivity also requires the injection or infusion of exogenous contrast reagents. In both MT and relaxographic approaches, the magnitude of the effect, and, thus, the ability to quantify pHe, depends on a spatially and temporally varying concentration of the CR. A number of approaches have been proposed to solve this problem and, once it is solved, pH imaging methods will be applicable to human clinical pathologies.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D005461 Fluorine A nonmetallic, diatomic gas that is a trace element and member of the halogen family. It is used in dentistry as fluoride (FLUORIDES) to prevent dental caries. Fluorine-19,Fluorine 19
D006573 Heterocyclic Compounds, 1-Ring Organic compounds that contain a ring structure made up of carbon and one or more additional elements such as nitrogen and oxygen. Heterocyclic Cpds, 1-Ring,1-Ring Heterocyclic Compounds,1-Ring Heterocyclic Cpds,Heterocyclic Compounds, 1 Ring,Heterocyclic Cpds, 1 Ring
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
May 2021, Cancers,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
November 2019, Journal of pharmaceutical sciences,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
January 2001, Vascular medicine (London, England),
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
January 2002, NMR in biomedicine,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
March 2014, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
April 2011, European journal of radiology,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
November 1966, Laboratory practice,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
January 2017, European journal of radiology,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
July 1999, Health care management science,
Robert J Gillies, and Natarajan Raghunand, and Maria L Garcia-Martin, and Robert A Gatenby
July 1998, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!