Periodic-pattern-selective cells in monkey visual cortex. 1992

R von der Heydt, and E Peterhans, and M R Dürsteler
Department of Neurology, University Hospital Zurich, Switzerland.

To study the visual processing of periodic and aperiodic patterns, we have analyzed neuronal responses in areas V1 and V2 of the visual cortex of alert monkeys during behaviorally induced fixation of gaze. Receptive field eccentricities ranged between 0.5 degrees and 4 degrees. We found cells that responded vigorously to gratings, but weakly or not all to bars and edges. In some cells the aperiodic stimuli even reduced the activity below the spontaneous level. The distribution of a bar-grating response index indicated a discrete population of "grating cells" characterized by more than 10-fold superiority of gratings. We estimated that these cells have a frequency of 4% in V1 and 1.6% in V2, and that about 4 million grafting cells of V1 subserve the central 4 degrees of vision. The converse, cells that responded to isolated bars but not to gratings of any periodicity, was also observed. The grating cells of V1 were mostly (23 of 26) found in layers 2, 3, and 4B. They preferred spatial frequencies between 2.6 and 19 cycles/degree (median, 9.3), with tuning widths at half-amplitude between 0.4 and 1.4 octaves (median, 1.0). Their tunings were narrower, and their preferred frequencies higher, than those of other cells on average. Grating cells were also narrowly tuned for orientation. Those of V2 were similarly selective. The responses of grating cells depended critically on the number of cycles of the gratings. With square waves of optimum periodicity responses required a minimum of 2-6 grating cycles and leveled off at 4-14 (median, 7.5). The corresponding receptive field widths were 0.34-2.4 degrees (median, 0.78 degrees) for V1 and 0.72-2.4 degrees (median, 1.4 degrees) for V2. Grating cells typically gave unmodulated responses to drifting gratings, were unselective for direction of motion, and were strongly activated also by stationary gratings. Half of those of V1 were monocular, the others binocular, some showing strong binocular facilitation and disparity sensitivity. Length summation was usually monotonic, but strong end-inhibition was also observed. In contrast to other cells, grating cells were not activated by harmonic components. Spatial-frequency response curves for sine-wave, square-wave, and line gratings were similar. Square-wave gratings of one-third the preferred frequency failed to excite the cells, while the isolated 3f component (f = the fundamental of the square wave) of these gratings evoked strong responses. In spite of the nonlinear features, grating cells had low contrast thresholds.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009799 Ocular Physiological Phenomena Processes and properties of the EYE as a whole or of any of its parts. Ocular Physiologic Processes,Ocular Physiological Processes,Ocular Physiology,Eye Physiology,Ocular Physiologic Process,Ocular Physiological Concepts,Ocular Physiological Phenomenon,Ocular Physiological Process,Physiology of the Eye,Physiology, Ocular,Visual Physiology,Concept, Ocular Physiological,Concepts, Ocular Physiological,Ocular Physiological Concept,Phenomena, Ocular Physiological,Phenomenon, Ocular Physiological,Physiologic Process, Ocular,Physiologic Processes, Ocular,Physiological Concept, Ocular,Physiological Concepts, Ocular,Physiological Process, Ocular,Physiological Processes, Ocular,Physiology, Eye,Physiology, Visual,Process, Ocular Physiologic,Process, Ocular Physiological,Processes, Ocular Physiologic,Processes, Ocular Physiological
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013028 Space Perception The awareness of the spatial properties of objects; includes physical space. Perception, Space,Perceptions, Space,Space Perceptions
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

R von der Heydt, and E Peterhans, and M R Dürsteler
March 1983, Proceedings of the Royal Society of London. Series B, Biological sciences,
R von der Heydt, and E Peterhans, and M R Dürsteler
January 1981, Nature,
R von der Heydt, and E Peterhans, and M R Dürsteler
February 1982, Journal of neurophysiology,
R von der Heydt, and E Peterhans, and M R Dürsteler
January 1973, The International journal of neuroscience,
R von der Heydt, and E Peterhans, and M R Dürsteler
January 1973, The International journal of neuroscience,
R von der Heydt, and E Peterhans, and M R Dürsteler
November 2021, Neural networks : the official journal of the International Neural Network Society,
R von der Heydt, and E Peterhans, and M R Dürsteler
January 1989, Neuroscience,
R von der Heydt, and E Peterhans, and M R Dürsteler
January 1999, Fiziologiia cheloveka,
R von der Heydt, and E Peterhans, and M R Dürsteler
June 1998, Neuron,
R von der Heydt, and E Peterhans, and M R Dürsteler
August 1970, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
Copied contents to your clipboard!