The spectrum of mutations causing HPRT deficiency: an update. 2004

H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland 21287, USA.

Mutations in the gene encoding hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior. Mutations in the same gene also cause less severe clinical phenotypes with only some portions of the full syndrome. A large database of 271 mutations associated with both full and partial clinical phenotypes was recently compiled. Since the original database was assembled, 31 additional mutations have been identified, bringing the new total to 302. The results demonstrate a very heterogeneous collection of mutations for both LND and its partial syndromes. The differences between LND and the partial phenotypes cannot be explained by differences in the locations of mutations, but the partial phenotypes are more likely to have mutations predicted to allow some residual enzyme function. The reasons for some apparent exceptions to this proposal are addressed.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007926 Lesch-Nyhan Syndrome An inherited disorder transmitted as a sex-linked trait and caused by a deficiency of an enzyme of purine metabolism; HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE. Affected individuals are normal in the first year of life and then develop psychomotor retardation, extrapyramidal movement disorders, progressive spasticity, and seizures. Self-destructive behaviors such as biting of fingers and lips are seen frequently. Intellectual impairment may also occur but is typically not severe. Elevation of uric acid in the serum leads to the development of renal calculi and gouty arthritis. (Menkes, Textbook of Child Neurology, 5th ed, pp127) Choreoathetosis Self-Mutilation Hyperuricemia Syndrome,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Disease,Choreoathetosis Self-Mutilation Syndrome,Complete HGPRT Deficiency Disease,Complete HPRT Deficiency,Complete Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency,Deficiency Disease, Complete HGPRT,Deficiency Disease, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency of Guanine Phosphoribosyltransferase,Deficiency of Hypoxanthine Phosphoribosyltransferase,HGPRT Deficiency,HGPRT Deficiency Disease, Complete,Hypoxanthine Guanine Phosphoribosyltransferase 1 Deficiency,Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Hypoxanthine Phosphoribosyltransferase Deficiency,Juvenile Gout, Choreoathetosis, Mental Retardation Syndrome,Juvenile Hyperuricemia Syndrome,Lesch-Nyhan Disease,Primary Hyperuricemia Syndrome,Total HPRT Deficiency,Total Hypoxanthine-Guanine Phosphoribosyl Transferase Deficiency,X-Linked Hyperuricemia,X-Linked Primary Hyperuricemia,Choreoathetosis Self Mutilation Hyperuricemia Syndrome,Choreoathetosis Self Mutilation Syndrome,Choreoathetosis Self-Mutilation Syndromes,Complete HPRT Deficiencies,Complete Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Deficiencies, Complete HPRT,Deficiencies, HGPRT,Deficiencies, Hypoxanthine Phosphoribosyltransferase,Deficiencies, Total HPRT,Deficiency Disease, Hypoxanthine Phosphoribosyl Transferase,Deficiency Diseases, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency, Complete HPRT,Deficiency, HGPRT,Deficiency, Hypoxanthine Phosphoribosyltransferase,Deficiency, Total HPRT,Guanine Phosphoribosyltransferase Deficiencies,Guanine Phosphoribosyltransferase Deficiency,HGPRT Deficiencies,HPRT Deficiencies, Complete,HPRT Deficiencies, Total,HPRT Deficiency, Complete,HPRT Deficiency, Total,Hyperuricemia Syndrome, Juvenile,Hyperuricemia Syndrome, Primary,Hyperuricemia Syndromes, Juvenile,Hyperuricemia Syndromes, Primary,Hyperuricemia, X-Linked,Hyperuricemia, X-Linked Primary,Hyperuricemias, X-Linked,Hyperuricemias, X-Linked Primary,Hypoxanthine Phosphoribosyl Transferase Deficiency Disease,Hypoxanthine Phosphoribosyltransferase Deficiencies,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Diseases,Juvenile Hyperuricemia Syndromes,Lesch Nyhan Disease,Lesch Nyhan Syndrome,Phosphoribosyltransferase Deficiencies, Guanine,Phosphoribosyltransferase Deficiencies, Hypoxanthine,Phosphoribosyltransferase Deficiency, Guanine,Phosphoribosyltransferase Deficiency, Hypoxanthine,Primary Hyperuricemia Syndromes,Primary Hyperuricemia, X-Linked,Primary Hyperuricemias, X-Linked,Self-Mutilation Syndrome, Choreoathetosis,Self-Mutilation Syndromes, Choreoathetosis,Syndrome, Choreoathetosis Self-Mutilation,Syndrome, Juvenile Hyperuricemia,Syndrome, Primary Hyperuricemia,Syndromes, Choreoathetosis Self-Mutilation,Syndromes, Juvenile Hyperuricemia,Syndromes, Primary Hyperuricemia,Total HPRT Deficiencies,Total Hypoxanthine Guanine Phosphoribosyl Transferase Deficiency,X Linked Hyperuricemia,X Linked Primary Hyperuricemia,X-Linked Hyperuricemias,X-Linked Primary Hyperuricemias
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013577 Syndrome A characteristic symptom complex. Symptom Cluster,Cluster, Symptom,Clusters, Symptom,Symptom Clusters,Syndromes
D019992 Databases as Topic Works on organized collections of records, standardized in format and content, that are stored in any of a variety of computer-readable modes. Data Banks as Topic,Data Bases as Topic,Databanks as Topic

Related Publications

H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
January 1989, Advances in experimental medicine and biology,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
January 2007, Molecular genetics and metabolism,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
February 2000, Annals of neurology,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
January 2000, Advances in experimental medicine and biology,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
January 1992, Environmental and molecular mutagenesis,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
October 2015, The Journal of clinical endocrinology and metabolism,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
December 2020, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
January 1993, Environmental and molecular mutagenesis,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
March 1994, Carcinogenesis,
H A Jinnah, and J C Harris, and W L Nyhan, and J P O'Neill
May 1991, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!