Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. 2005

Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
Deptartment of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL 60064-3095, USA. Xiu-Ti.Hu@rosalindfranklin.edu

Receptor-mediated dopamine (DA) modulation of neuronal excitability in the nucleus accumbens (NAc) has been shown to be critically involved in drug addiction and a variety of brain diseases. However, the mechanisms underlying the physiological or pathological molecular process of DA modulation remain largely elusive. Here, we demonstrate that stimulation of DA D2 class receptors (D2R) enhanced voltage-sensitive sodium currents (VSSCs, I(Na)) in freshly dissociated NAc neurons via suppressing tonic activity of the cyclic AMP/PKA cascade and facilitating intracellular Ca2+ signaling. D2R-mediated I(Na) enhancement depended on activation of G(i/o) proteins and was mimicked by direct inhibition of PKA. Furthermore, increasing free [Ca2+]in by activating inositol 1,4,5-triphosphate receptors (IP3Rs), blocking Ca2+ reuptake, or adding buffered Ca2+, all enhanced I(Na). Under these circumstances, D2R-mediated I(Na) enhancement was occluded. In contrast, D2R-mediated I(Na) enhancement was blocked by inhibition of IP3Rs, chelation of free Ca2+, or inhibition of Ca2(+)/calmodulin-activated calcineurin (CaN), but not by inhibition of phospholipase C (PLC). Although stimulation of muscarinic cholinergic receptors (mAChRs) also increased I(Na), this action was blocked by PLC inhibitors. Our findings indicate that D2Rs mediate an enhancement of VSSCs in NAc neurons, in which cytosolic free Ca2+ plays a crucial role. Our results also suggest that D2R-mediated reduction in tonic PKA activity may increase free [Ca2+]in, primarily via disinhibition of IP3Rs. IP3R activation then facilitates Ca2+ signaling and subsequently enhances VSSCs via decreasing PKA-induced phosphorylation and increasing CaN-induced dephosphorylation of Na+ channels. This study provides insight into the complex and dynamic role of D2Rs in the NAc.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009116 Muscarine A toxic alkaloid found in Amanita muscaria (fly fungus) and other fungi of the Inocybe species. It is the first parasympathomimetic substance ever studied and causes profound parasympathetic activation that may end in convulsions and death. The specific antidote is atropine.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal

Related Publications

Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
January 2023, Frontiers in molecular neuroscience,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
January 1993, Progress in brain research,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
June 2016, Nature communications,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
May 2002, Digestive diseases and sciences,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
June 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
February 2002, Gastroenterology,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
January 2000, Journal of neural transmission (Vienna, Austria : 1996),
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
January 1996, Neuropharmacology,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
March 2001, Neuroreport,
Xiu-Ti Hu, and Yan Dong, and Xu-Feng Zhang, and Francis J White
September 1995, Journal of neurophysiology,
Copied contents to your clipboard!