Nitric oxide within periaqueductal gray modulates glutamatergic neurotransmission and cardiovascular responses during mechanical and thermal stimuli. 2005

Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
Department of Pharmaceutical Sciences, College of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, USA.

We have previously reported that nitric oxide (NO) within the rostral ventrolateral medulla (RVLM) attenuates cardiovascular responses and extracellular concentrations of glutamate during thermal, but not during mechanical nociceptive stimulation (Ishide. T., Maher, T.J., Ally, A. 2003. Role of nitric oxide in the ventrolateral medulla on cardiovascular responses and glutamate neurotransmission during mechanical and thermal stimuli. Pharmacol. Res. 47, 59-68). In this study, we examined the role of nitric oxide within the dorsolateral periaqueductal gray matter (PAG), a higher center integrating nociceptive reflexes, on cardiovascular responses and glutamate release during both mechanical and thermal nociception using anesthetized Sprague-Dawley rats. Two types of stimuli were studied, both activating peripheral A(delta) and C fiber polymodal nociceptors. Noxious mechanical stimulus was given by applying a bilateral hindpaw pinch for 5 s. Mechanical stimulation of a hindlimb increased mean arterial pressure (MAP), heart rate (HR), and extracellular fluid glutamate within PAG by 20+/-3 mmHg, 37+/-6 bpm, and 1.7+/-0.3 ng/5 microl, respectively (n=10). Bilateral microdialysis of L-arginine (1.0 microM), a NO precursor, into the PAG significantly attenuated MAP, HR, and glutamate increases during a mechanical stimulation. Subsequent administration of N(G)-methyl-L-arginine (L-NMMA) (1.0 microM), a NO synthase inhibitor, into the PAG blocked the ability of NO within PAG to modulate the cardiovascular responses to mechanical stimulus. The noxious thermal stimulus was generated by immersing the metatarsus of a hindpaw in water-bath at a temperature of 52 degrees C for 5 s. Similar increases were observed following thermal stimulation: 35+/-5 mmHg, 40+/-6 bpm, and 1.14+/-0.4 ng/5 microl (n=10). L-Arginine attenuated both cardiovascular responses and glutamate increase during thermal nociception. These results demonstrate that NO within the dorsolateral PAG plays a role in modulating cardiovascular responses by altering glutamate concentrations during both thermal and mechanical nociception.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005260 Female Females

Related Publications

Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
January 2003, Pharmacological research,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
February 2012, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
August 2000, Brain research,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
September 1998, Brain research,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
May 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
January 2001, Pharmacological research,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
March 1996, General pharmacology,
Takeshi Ishide, and Ahmed Amer, and Timothy J Maher, and Ahmmed Ally
December 2022, Animal models and experimental medicine,
Copied contents to your clipboard!