Antagonistic interaction of laryngeal and central chemoreceptor respiratory reflexes. 1992

B N Van Vliet, and M Uenishi
Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216.

Stimulation of laryngeal afferent fibers evokes a profound reflex inhibition of central respiratory drive. The interaction of this airway reflex with chemoreceptive ventilatory control mechanisms is poorly understood. The present study was undertaken to determine whether there is significant interaction between the effects of central chemoreceptor and laryngeal afferent stimulation on central inspiratory activity and, if so, to also determine the nature of the interaction. The effect of electrical stimulation of the superior laryngeal nerve (SLN) on the timing and intensity of central inspiratory activity was determined from the rectified and filtered phrenic neurogram in 10 dogs. Each dogs was decerebrated, artificially ventilated, vagotomized, and had the carotid bodies denervated. In each case, stimulation of the right SLN at 3 and 10 Hz caused a frequency-dependent slowing or arrest of central inspiratory activity. Increases in arterial PCO2 (PaCO2) attenuated the absolute level of inhibition of central inspiratory activity recorded during both SLN stimulation and control periods. Tp clarify the nature of the interaction between chemoreceptor and laryngeal afferent stimulation, the relationship between PaCO2 and central inspiratory activity was investigated during stimulation of the SLN at 0, 3, and 10 Hz. Control central inspiratory activity increased as a sigmoidal function of PaCO2. This sigmoidal relationship was greatly depressed during SLN stimulation but did not appear to be shifted along the PaCO2 axis. The results of this study therefore suggest that the interaction between central chemoreceptor and laryngeal afferent stimulation is multiplicative: the inhibition of the central inspiratory activity is mediated by an attenuation and not a resetting of central chemoreflexes.

UI MeSH Term Description Entries
D007823 Laryngeal Nerves Branches of the VAGUS NERVE. The superior laryngeal nerves originate near the nodose ganglion and separate into external branches, which supply motor fibers to the cricothyroid muscles, and internal branches, which carry sensory fibers. The RECURRENT LARYNGEAL NERVE originates more caudally and carries efferents to all muscles of the larynx except the cricothyroid. The laryngeal nerves and their various branches also carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions. Laryngeal Nerve, Superior,Laryngeal Nerve,Laryngeal Nerves, Superior,Nerve, Laryngeal,Nerve, Superior Laryngeal,Nerves, Laryngeal,Nerves, Superior Laryngeal,Superior Laryngeal Nerve,Superior Laryngeal Nerves
D008297 Male Males
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D012125 Respiratory Center Part of the brain located in the MEDULLA OBLONGATA and PONS. It receives neural, chemical and hormonal signals, and controls the rate and depth of respiratory movements of the DIAPHRAGM and other respiratory muscles. Center, Respiratory,Centers, Respiratory,Respiratory Centers
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females

Related Publications

B N Van Vliet, and M Uenishi
September 2022, Experimental physiology,
B N Van Vliet, and M Uenishi
January 1980, The Annals of otology, rhinology, and laryngology,
B N Van Vliet, and M Uenishi
December 2001, The American journal of medicine,
B N Van Vliet, and M Uenishi
May 1979, Archives internationales de pharmacodynamie et de therapie,
B N Van Vliet, and M Uenishi
February 1951, Acta physiologica Scandinavica,
B N Van Vliet, and M Uenishi
January 1988, The American journal of physiology,
B N Van Vliet, and M Uenishi
November 1975, Kokyu to junkan. Respiration & circulation,
B N Van Vliet, and M Uenishi
July 1972, The Journal of physiology,
B N Van Vliet, and M Uenishi
January 1985, Acta physiologica Polonica,
Copied contents to your clipboard!