Intracellular pH homeostasis in cultured human placental syncytiotrophoblast cells: recovery from acidification. 2005

Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
Dept. of Obstetrics, Gynecology, and Women's Health, Medical Sciences Bldg., E506, New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103-2714, USA.

Resting or basal intracellular pH (pHi) measured in cultured human syncytiotrophoblast cells was 7.26+/-0.04 (without HCO3-) or 7.24+/-0.03 (with HCO3-). Ion substitution and inhibitor experiments were performed to determine whether common H+-transporting species were operating to maintain basal pHi. Removal of extracellular Na+ or Cl- or addition of amiloride or dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) had no effect. Acidification with the K+/H+ exchanger nigericin reduced pHi to 6.25+/-0.15 (without HCO3-) or 6.53+/-0.10 (with HCO3-). In the presence of extracellular Na+, recovery to basal pHi was prompt and occurred at similar rates in the absence and presence of HCO3-. Ion substitution and inhibition experiments were also used to identify the species mediating the return to basal pHi after acidification. Recovery was inhibited by removal of Na+ or addition of amiloride, whereas removal of Cl- and addition of H2DIDS were ineffective. Addition of the Na+/H+ exchanger monensin to cells that had returned to basal pHi elicited a further increase in pHi to 7.48+/-0.07. Analysis of recovery data showed that there was a progressive decrease in DeltapH per minute as pHi approached the basal level, despite the continued presence of a driving force for H+ extrusion. These data show that in cultured syncytial cells, in the absence of perturbation, basal pHi is preserved despite the absence of active, mediated pH maintenance. They also demonstrate that an Na+/H+ antiporter acts to defend the cells against acidification and that it is the sole transporter necessary for recovery from an intracellular acid load.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
January 1988, Journal of molecular and cellular cardiology,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
October 1993, The American journal of physiology,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
April 2022, Scientific reports,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
February 1997, American journal of respiratory and critical care medicine,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
November 1996, Journal of neuroscience research,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
January 1988, Journal of immunology (Baltimore, Md. : 1950),
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
June 2020, Cancer discovery,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
January 2008, The Journal of membrane biology,
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
January 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Elizabeth A Cowley, and Mary C Sellers, and Nicholas P Illsley
March 1990, The American journal of physiology,
Copied contents to your clipboard!