Release of excitatory amino acids from cultured hippocampal astrocytes induced by a hypoxic-hypoglycemic stimulation. 1992

T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
Department of Physiology, Ehime University, School of Medicine, Japan.

An excess release of excitatory amino acids (EAA) is an important factor for postischemic brain damage. In the present communication, we demonstrate that cultured hippocampal cells release EAA after hypoxic-hypoglycemic treatment. The amounts of EAA released from astrocytes were appreciably above those released from neurons. Furthermore, the amount of aspartate released from astrocytes was comparable to that of glutamate, although the endogenous content of aspartate was one-fifth that of glutamate. The endogenous content of aspartate in astrocytes increased even after hypoxic-hypoglycemic treatment. These results suggests that ischemic neuronal death is due, at least in part, to the excitotoxicity of aspartate and glutamate derived from surrounding astrocytes.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
May 1989, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
February 1996, Journal of neurochemistry,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
January 1989, Neuroscience,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
February 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
February 1998, Neuroscience,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
April 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
January 1992, Progress in brain research,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
August 2002, American journal of physiology. Cell physiology,
T Ogata, and Y Nakamura, and T Shibata, and K Kataoka
September 1992, European journal of pharmacology,
Copied contents to your clipboard!