Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. 2005

A G Miriam Leenders, and Zu-Hang Sheng
Synaptic Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, 35 Convent Drive, Bethesda, MD 20892-3701, USA.

Activity-dependent modulation of synaptic function and structure is emerging as one of the key mechanisms underlying synaptic plasticity. Whereas over the past decade considerable progress has been made in identifying postsynaptic mechanisms for synaptic plasticity, the presynaptic mechanisms involved have remained largely elusive. Recent evidence implicates that second messenger regulation of the protein interactions in synaptic vesicle release machinery is one mechanism by which cellular events modulate synaptic transmission. Thus, identifying protein kinases and their targets in nerve terminals, particularly those functionally regulated by synaptic activity or intracellular [Ca2+], is critical to the elucidation of the molecular mechanisms underlying modulation of neurotransmitter release and presynaptic plasticity. The phosphorylation and dephosphorylation states of synaptic proteins that mediate vesicle exocytosis could regulate the biochemical pathways leading from synaptic vesicle docking to fusion. However, functional evaluation of the activity-dependent phosphorylation events for modulating presynaptic functions still represents a considerable challenge. Here, we present a brief overview of the data on the newly identified candidate targets of the second messenger-activated protein kinases in the presynaptic release machinery and discuss the potential impact of these phosphorylation events in synaptic strength and presynaptic plasticity.

UI MeSH Term Description Entries
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D016704 Synapsins A family of synaptic vesicle-associated proteins involved in the short-term regulation of NEUROTRANSMITTER release. Synapsin I, the predominant member of this family, links SYNAPTIC VESICLES to ACTIN FILAMENTS in the presynaptic nerve terminal. These interactions are modulated by the reversible PHOSPHORYLATION of synapsin I through various signal transduction pathways. The protein is also a substrate for cAMP- and CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. It is believed that these functional properties are also shared by synapsin II. Synapsin,Synapsin I,Synapsin II,Synapsin III
D017661 Receptors, Presynaptic Neurotransmitter receptors located on or near presynaptic terminals or varicosities. Presynaptic receptors which bind transmitter molecules released by the terminal itself are termed AUTORECEPTORS. Presynaptic Receptors,Presynaptic Receptor,Receptor, Presynaptic
D017871 Calcium-Calmodulin-Dependent Protein Kinases A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277) Ca(2+)-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinases,Multifunctional Calcium-Calmodulin-Dependent Protein Kinase,Restricted Calcium-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinases, Multifunctional,Calcium-Calmodulin-Dependent Protein Kinases, Restricted,Calmodulin-Dependent Multiprotein Kinase,Calmodulin-Kinase,Cam-MPK,Multifunctional Calcium-Calmodulin-Dependent Protein Kinases,Restricted Calcium-Calmodulin-Dependent Protein Kinases,Calcium Calmodulin Dependent Protein Kinase,Calcium Calmodulin Dependent Protein Kinases, Multifunctional,Calcium Calmodulin Dependent Protein Kinases, Restricted,Calmodulin Dependent Multiprotein Kinase,Calmodulin Dependent Protein Kinase,Calmodulin Dependent Protein Kinases,Calmodulin Kinase,Cam MPK,Kinase, Calcium-Calmodulin-Dependent Protein,Kinase, Calmodulin-Dependent Protein,Multifunctional Calcium Calmodulin Dependent Protein Kinase,Multifunctional Calcium Calmodulin Dependent Protein Kinases,Multiprotein Kinase, Calmodulin-Dependent,Protein Kinase, Calcium-Calmodulin-Dependent,Protein Kinase, Calmodulin-Dependent,Protein Kinases, Calcium-Calmodulin-Dependent,Protein Kinases, Calmodulin-Dependent,Restricted Calcium Calmodulin Dependent Protein Kinase,Restricted Calcium Calmodulin Dependent Protein Kinases
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

A G Miriam Leenders, and Zu-Hang Sheng
December 1995, Australian and New Zealand journal of medicine,
A G Miriam Leenders, and Zu-Hang Sheng
July 1989, Physiological reviews,
A G Miriam Leenders, and Zu-Hang Sheng
December 2020, International journal of molecular sciences,
A G Miriam Leenders, and Zu-Hang Sheng
January 1982, Journal de pharmacologie,
A G Miriam Leenders, and Zu-Hang Sheng
August 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A G Miriam Leenders, and Zu-Hang Sheng
April 1999, Progress in neuro-psychopharmacology & biological psychiatry,
A G Miriam Leenders, and Zu-Hang Sheng
January 1991, Journal of neural transmission. Supplementum,
A G Miriam Leenders, and Zu-Hang Sheng
February 2002, Seikagaku. The Journal of Japanese Biochemical Society,
A G Miriam Leenders, and Zu-Hang Sheng
January 2016, Frontiers in cellular neuroscience,
A G Miriam Leenders, and Zu-Hang Sheng
February 2020, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
Copied contents to your clipboard!