Redox regulation of protein-tyrosine phosphatases. 2005

Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. hertog@niob.knaw.nl

The protein-tyrosine phosphatases (PTPs) form a large family of signaling proteins with essential functions in embryonic development and adult physiology. The PTPs are characterized by an absolutely conserved catalytic site cysteine with a low pK(a) due to its microenvironment, making it vulnerable to oxidation. PTPs are differentially oxidized and inactivated in vitro and in living cells. Many cellular stimuli induce a shift in the cellular redox state towards oxidation and evidence is accumulating that at least part of the cellular responses to these stimuli are due to specific, transient inactivation of PTPs, indicating that PTPs are important sensors of the cellular redox state.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations
D020134 Catalytic Domain The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic
D020836 Protein Structure, Quaternary The characteristic 3-dimensional shape and arrangement of multimeric proteins (aggregates of more than one polypeptide chain). Quaternary Protein Structure,Protein Structures, Quaternary,Quaternary Protein Structures
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
September 2003, Trends in biochemical sciences,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
July 2011, Antioxidants & redox signaling,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
May 2011, Angewandte Chemie (International ed. in English),
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
September 2022, The FEBS journal,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
February 2009, Biochemistry,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
October 2017, Chem,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
May 2014, Journal of biomedical research,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
January 2013, Methods in enzymology,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
June 2001, Trends in cell biology,
Jeroen den Hertog, and Arnoud Groen, and Thea van der Wijk
January 2012, Frontiers in neuroscience,
Copied contents to your clipboard!