Tea catechin, epigallocatechin-3-gallate suppresses myosin II regulatory light chain phosphorylation. 2004

Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Phosphorylation of myosin II regulatory light chain (MRLC) is critical event for many cellular processes including muscle contraction, mytosis, migration, and exocytosis. Epigallocatechin-3-O-gallate (EGCG) is a major polyphenolic compound of green tea and has various physiological functions. We found that EGCG disrupted stress fibers and suppressed the MRLC phosphorylation in HeLa cells. To elucidate the mechanism for the suppressive effect on the phosphorylation, we examined the effect of various inhibitors for kinases that modulate MRLC phosphorylation. None of the inhibitors mimic the activity of EGCG. These results suggest that EGCG is a compound that can suppress MRLC phosphorylation.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013662 Tea The infusion of leaves of CAMELLIA SINENSIS (formerly Thea sinensis) as a beverage, the familiar Asian tea, which contains CATECHIN (especially epigallocatechin gallate) and CAFFEINE. Black Tea,Green Tea,Black Teas,Green Teas,Tea, Black,Tea, Green,Teas, Black,Teas, Green
D018994 Myosin Light Chains The smaller subunits of MYOSINS that bind near the head groups of MYOSIN HEAVY CHAINS. The myosin light chains have a molecular weight of about 20 KDa and there are usually one essential and one regulatory pair of light chains associated with each heavy chain. Many myosin light chains that bind calcium are considered "calmodulin-like" proteins. Myosin Alkali Light Chains,Myosin Alkali Light Chain,Myosin Essential Light Chain,Myosin Essential Light Chains,Myosin Light Chain,Myosin Regulatory Light Chain,Myosin Regulatory Light Chains,Light Chain, Myosin,Light Chains, Myosin

Related Publications

Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
April 2020, Biomolecules,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
March 2011, Antimicrobial agents and chemotherapy,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
September 2002, Journal of agricultural and food chemistry,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
September 2016, Molecules (Basel, Switzerland),
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
December 2011, Biochemical pharmacology,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
December 1997, Journal of nutritional science and vitaminology,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
February 2009, Biophysical journal,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
April 2020, Nutritional neuroscience,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
September 2010, PloS one,
Daisuke Umeda, and Hirofumi Tachibana, and Koji Yamada
January 2015, Antiviral research,
Copied contents to your clipboard!