Mechanisms of interleukin-4 effects on calcium signaling in airway smooth muscle cells. 2005

Michael F Ethier, and Erika Cappelluti, and J Mark Madison
Department of Medicine, LRB Room 319, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA.

In airway smooth muscle cells, interleukin (IL)-4 inhibited both carbachol- and caffeine-induced calcium mobilization from the sarcoplasmic reticulum (SR). Because of the known signaling pathways for IL-4 and importance of calcium uptake in maintaining SR calcium stores shared by agonists and caffeine, it was hypothesized that this rapid inhibitory effect might depend on phosphatidylinositol 3-kinase (PI3K) and on inhibition of calcium uptake by the SR. Enzyme-dispersed bovine trachealis cells were loaded with Fura-2/acetoxymethyl ester, and changes in cytosolic calcium were imaged in single cells. Cells were pretreated with inhibitors of PI3K, either wortmannin (100 nM), LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] (50 microM), or deguelin (100 nM). Calcium transients in response to carbachol (10 microM) were significantly decreased to 0.34 +/- 0.10 of control after 20-min treatment with IL-4 but were 1.10 +/- 0.26 and 1.08 +/- 0.23 when wortmannin or deguelin, respectively, was added along with IL-4. LY294002 alone had nonspecific effects on transients. In other experiments, cyclopiazonic acid (CPA) (5 microM), an inhibitor of SR calcium uptake, decreased carbachol-stimulated transients within 4 min to 0.83 +/- 0.08 of control (n = 6). However, for cells treated with IL-4 (50 ng/ml) plus CPA, transients decreased significantly more, to only 0.51 +/- 0.05 (n = 6; p < 0.05). Longer exposures to IL-4 and a higher concentration of CPA (30 microM) gave similar results. It was concluded that IL-4 did not inhibit transients in the presence of PI3K antagonists but that it did in the presence of CPA. This suggested that IL-4 inhibited calcium transients by mechanisms dependent upon a wortmannin-sensitive PI3K but not by inhibition of calcium uptake into the SR.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000081082 Phosphoinositide-3 Kinase Inhibitors Agents that inhibit PHOSPHOINOSITIDE-3 KINASE activity. Phosphoinositide-3 Kinase Inhibitor,Inhibitor, Phosphoinositide-3 Kinase,Inhibitors, Phosphoinositide-3 Kinase,Kinase Inhibitor, Phosphoinositide-3,Kinase Inhibitors, Phosphoinositide-3,Phosphoinositide 3 Kinase Inhibitor,Phosphoinositide 3 Kinase Inhibitors
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

Michael F Ethier, and Erika Cappelluti, and J Mark Madison
July 2008, American journal of physiology. Lung cellular and molecular physiology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
January 2008, Proceedings of the American Thoracic Society,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
June 2001, American journal of physiology. Lung cellular and molecular physiology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
June 2000, American journal of physiology. Lung cellular and molecular physiology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
August 2001, American journal of respiratory cell and molecular biology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
July 2008, Experimental physiology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
April 2000, Toxicology and applied pharmacology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
November 1997, The American journal of physiology,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
July 2001, American journal of respiratory and critical care medicine,
Michael F Ethier, and Erika Cappelluti, and J Mark Madison
April 2021, Comprehensive Physiology,
Copied contents to your clipboard!