Ethanol and signal transduction in the liver. 1992

J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.

The liver is a major target for both short- and long-term actions of ethanol. The mechanisms that mediate the response of cells and tissues to chronic intake of ethanol are unknown, but it is likely that both adaptive and deleterious responses are triggered by short-term interactions of the cell with ethanol. Cellular signaling processes are candidates to mediate the connection between short- and long-term actions of ethanol. Receptor-coupled signal transduction systems in the plasma membrane of many different cell types are affected by ethanol. In the liver, the signaling processes associated with phospholipases C and D are particularly responsive to ethanol. In this review, we investigate the direct and indirect short-term effects of ethanol on the signal transduction systems in liver and discuss the possible implications for the responses of the liver to chronic ethanol exposure.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
January 2000, Alcoholism, clinical and experimental research,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
February 1997, Nihon rinsho. Japanese journal of clinical medicine,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
February 1994, Biochemical and biophysical research communications,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
January 1990, Progress in liver diseases,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
December 2003, Alcoholism, clinical and experimental research,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
September 1998, Journal of gastroenterology and hepatology,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
September 1998, Journal of gastroenterology and hepatology,
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
January 1986, Alcohol (Fayetteville, N.Y.),
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
January 1985, Alcohol (Fayetteville, N.Y.),
J B Hoek, and A P Thomas, and T A Rooney, and K Higashi, and E Rubin
January 2013, Advances in experimental medicine and biology,
Copied contents to your clipboard!