Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA-1 and CD154 or CD45RB. 2005

Gina R Rayat, and Ronald G Gill
Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada.

A variety of transient therapies directed against molecules involved in T-cell activation and function result in long-term islet allograft survival. However, there are relatively few examples of durable islet xenograft survival using similar short-term approaches, especially regarding highly phylogenetically disparate xenograft donors. Previous studies demonstrate that combined anti-lymphocyte function-associated antigen-1 (LFA-1) plus anti-CD154 therapy results in a robust form of islet allograft tolerance not observed with either individual monotherapy. Thus, the aim of this study was to determine whether the perturbation of anti-LFA-1, either alone or in combination with targeting CD154 or CD45RB, would promote neonatal porcine islet (NPI) xenograft survival in mice. NPI xenografts are rapidly rejected in wild-type C57BL/6 mice but reproducibly mature and restore durable euglycemia in diabetic, immune-deficient C57BL/6 rag-1(-/-) recipients. A short course of individual anti-LFA-1, anti-CD154, or anti-CD45RB therapy resulted in long-term (>100 days) survival in a moderate proportion of C57BL/6 recipients. However, simultaneous treatment with anti-LFA-1 plus either anti-CD154 or anti-CD45RB therapy could achieve indefinite xenograft function in the majority of recipient animals. Importantly, prolongation of islet xenograft survival using combined anti-LFA-1/anti-CD154 therapy was associated with little mononuclear cell infiltration and greatly reduced anti-porcine antibody levels. Taken together, results indicate that therapies simultaneously targeting differing pathways impacting T-cell function can show marked efficacy for inducing long-term xenograft survival and produce a prolonged state of host hyporeactivity in vivo.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft
D016169 Lymphocyte Function-Associated Antigen-1 An integrin heterodimer widely expressed on cells of hematopoietic origin. CD11A ANTIGEN comprises the alpha chain and the CD18 antigen (CD18 ANTIGENS) the beta chain. Lymphocyte function-associated antigen-1 is a major receptor of T-CELLS; B-CELLS; and GRANULOCYTES. It mediates the leukocyte adhesion reactions underlying cytolytic conjugate formation, helper T-cell interactions, and antibody-dependent killing by NATURAL KILLER CELLS and granulocytes. Intracellular adhesion molecule-1 has been defined as a ligand for lymphocyte function-associated antigen-1. LFA-1,Leukocyte Function Associated Antigen-1,Integrin alphaLbeta2,Antigen-1, Lymphocyte Function-Associated,Lymphocyte Function Associated Antigen 1,alphaLbeta2, Integrin

Related Publications

Gina R Rayat, and Ronald G Gill
February 2004, Transplantation,
Gina R Rayat, and Ronald G Gill
April 1996, Transplantation,
Gina R Rayat, and Ronald G Gill
June 1997, Transplantation proceedings,
Copied contents to your clipboard!